
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

NATIONAL COMPUTER SECURITY CENTER

15TH NATIONAL COMPUTER SECURITY CONFERENCE

October 13-16,1992
Baltimore Convention Center

Baltimore, MD

PROCEEDINGS
VOLUME I

Information Systems Security:
Building Blocks to the Future

20090327428

R

DEFENSE TECHNICAL INFORMATION CENTER

[nfor*utfioKfor tint Otfuut CommMtuity

eked below. Yhe i
DTIC®has determined on ^\ / \0 /'tffifl that this Technical Document has the
Distribution Statement checked below. Yhe current distribution for this document can
be found in the DTIC® Technical Report Database.

£3 DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited.

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only (fill in reason) (date of determination). Other requests for this document
shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government |
Agencies and their contractors (fill in reason) (date of determination). Other requests for
this document shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other
requests shall be referred to (insert controlling DoD office).

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only
(fill in reason) (date of determination). Other requests shall be referred to (insert
controlling DoD office).

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by
(inserting controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25; (date of determination). DoD
Controlling Office is (insert controlling DoD office).

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems

Laboratory (CSL) are pleased to welcome you to the Fifteenth Annual National

Computer Security Conference. We believe that the Conference will stimulate a vital

and dynamic exchange of information and foster an understanding of emerging

technologies.

The theme for this year's conference, "Information Systems Security: Building

Blocks to the Future," reflects the continuing importance of the broader information

systems security issues facing us. At the heart of these issues are two items which will

receive special emphasis this week-Information Systems Security Criteria (and how it

affects us), and the actions associated with organizational accreditation. These areas

will be highlighted by emphasizing how organizations are integrating information

security solutions. You will observe how Government, Industry, and Academe are

cooperating to extend the state-of-the-art technology to information systems

security. Presentations will provide you with some thoughtful insights as well as

innovative ideas in developing your own solutions. Additionally, panel members will

address how they develop their automated information security responsibilities.

This cooperative educational program will refresh us with the perspectives of the

past, and will project directions of the future.

We firmly believe that awareness and responsibility are the foundations of all

information security programs. For our collective success, we ask that you reflect on

the ideas and information presented this week; then share this information with

your peers, your management, your administration, and your customers. By sharing

this information, we will develop a stronger knowledge base for tomorrow's

journey.

PATRICk:
Director

National Computer Security Center

JAMES H. BURROWS
Director

Computer Systems Laboratory

Conference

Dr. Marshall Abrams
Roland Albert
James P. Anderson
Devolyn Arnold
James Arnold
V.A. Ashby
David Balenson
Dr. D. Elliott Bell
James W. Birch
W.Earl Boebert
Edward Borodkin
Dr. Martha Branstad
Dr.Blaine Burnham
Dr. John Campbell
David Chizmadia
Dr. Deborah Cooper
Donna Dodson
Dr. Deborah Downs
David Ferraiolo
Ellen Flahavin
L. Dain Gary
William Geer
Virgil Gibson
Dennis Gilbert
Irene Gilbert
Captain James Goldston, USAF
Dr. Joshua Guttman
Dr. Grace Hammonds
Douglas Hardie
Ronda Henning
Dr. Harold Highland, FICS
Jack Holleran
Hilary H. Hosmer
Russell Housley
Howard Israel

The MITRE Corporation
Department of Defense
J.P.Anderson Company
Department of Defense
Department of Defense
The MITRE Corporation

Trusted Information Systems, Inc.
BBND

Secure Systems, Inc.
Secure Computing Technology Corporation

National Computer Security Center
Trusted Information Systems, Inc.

Department of Defense
Department of Defense
Department of Defense

Unisys
National Institute of Standards and Technology

The AEROSPACE Corporation
National Institute of Standards and Technology
National Institute of Standards and Technology

Carnegie Mellon University
AFCSC

Grumann Data Systems
National Institute of Standards and Technology
National Institute of Standards and Technology

AFCSC
The MITRE Corporation

AGCS, Inc.
Unisys Corporation
Harris Corporation

Compulit, Inc.
National Computer Security Center

Data Security, Inc.
XEROX Information Systems

AT&T Bell Laboratories

Referees
Professor Sushil Jajodia
John Keenan
Dr. Richard Kemmerer
Dr. Steven Kent
Richard Kuhn
Steven LaFountain
Paul A. Lambert
Dr. Cart Landwehr
Robert Lau
Dr. Theodore M.P. Lee
Steven B. Lipner
Teresa Lunt
Frank Mayer
Dr. Catherine Meadows
Sally Meglathery
William H. Murray
Noel Nazario
Dr. Peter Neumann
NickPantiuk
Donn Parker
Dr. Charles Pf leeger
Professor Ravi Sandhu
Marvin Schaefer
Daniel Schnackenberg
Miles Smid
Brian Snow
Dr. Dennis Steinauer
Mario Tinto
Eugene Troy
Kenneth vanWyk
Grant Wagner
Major Glenn Watt, USAF
Wayne Weingaertner
Howard Weiss
Roy Wood

George Mason University
CISEC

University Of California, Santa Barbara
BBN

National Institute of Standards and Technology
Department of Defense

Motorola GEG
Naval Research Laboratory

Department of Defense
Trusted Information Systems, Inc.

The MITRE Corporation
SRI International

Aerospace Corporation
Naval Research Laboratory
New York Stock Exchange

Deloitte & Touche
National Institute of Standards and Technology

SRI International
Grumann Data Systems

SRI International
Institute for Defense Analyses

George Mason University
CTA, Inc.

Boeing Aerospace Corporation
National Institute of Standards and Technology

Department of Defense
National Institute of Standards and Technology

Department of Defense
National Institute of Standards and Technology

Carnegie Mellon University
Department of Defense

USAF Strategic Air Command
Department of Defense

SPARTA
Department of Defense

11

Awards Ceremony
6:00 p.m., Thursday, October 15
Convention Center, Terrace Level

A joint awards ceremony will be held at which the National Institute of Standards
and Technology (NIST) and the National Computer Security Center (NCSC) will honor
the vendors who have successfully developed products meeting the standards of the
respective organizations

The Computer Security Division at NIST provides validation services for vendors
to use in testing devices for conformance to security standards defined in three Federal
Information Processing Standards (FIPS): FIPS 46-1, The Data Encryption Standard
(DES), FIPS 113, Computer Data Authentication, and FIPS 171, Key Management
Using ANSI X9.17.

Conformance to FIPS 46-1 is tested using the Monte Carlo test described in NBS
Special Publication 500-20, Validating the Correctness of Hardware Implementations of
the NBS Data Encryption Standard which requires performing eight million encryptions
and four million decryptions.

Conformance to FIPS 113 and its American Standards Institute counterpart,
ANSI X9 9, Financial Institution Message Authentication (Wholesale) is tested using an
electronic bulletin board (EBB) test as specified in NBS Special Publication 500-156,
Message Authentication Code (MAC) Validation System: Requirements and Procedures.
The test consists of a series of challenges and responses in which the vendor is requested
to either compute or verify an MAC using a specified randomly generated key.

Conformance to FIPS 171, which adopts ANSI X9.17, Financial Institution Key
Management (Wholesale), is also tested using an EBB as specified in a document
entitled NIST Key Management Validation System Point-to-Point (PTP) Requirements.

The NCSC recognizes vendors who contribute to the availability of trusted
products and thus expand the range of solutions from which customers may select to
secure their data. The products are placed on the Evaluated Products List (EPL)
following a successful evaluation against the Trusted Computer Systems Evaluation
Criteria including its interpretations: Trusted Database Interpretation, Trusted Network
Interpretation, and Trusted Subsystem Interpretation. Vendors who have completed the
evaluation process will receive a formal certificate of completion from the Director,
NCSC marking the addition to the EPL. In addition, vendors will receive honorable
mention for being in the final stages of an evaluation as evidenced by transition into the
Formal Evaluation phase or for placing a new release of a trusted product on the EPL by
participation in the Ratings Maintenance Program. The success of the Trusted Product
Evaluation Program is made possible by the commitment of the vendor community.

We congratulate all who have earned these awards.

in

15th National Computer Security Conference
Table of Contents

Refereed Papers
1 Accreditation: Is it a Security Requirement or a Good Management Practice?

Thomas E. Anderson, USATREX International Inc.

9 Application Layer Security Requirements of a Medical Information System
Deborah Hamilton, Hewlett-Packard Laboratories

18 An Approach for Multilevel Security (MLS) Acquisition
Bill Neugent, The MITRE Corporation

28 Architectural Implications of Covert Channels
Norman E. Proctor, Peter G. Neumann,

Computer Science Lab, SRI International

44 Assessing Modularity in Trusted Computing Bases
J. L. Arnold, R. J. Bottomly, National Security Agency
D. B. Baker, D. D. Downs, The Aerospace Corporation
F. Belvin. S. Chokhani, The MITRE Corporation

57 Companion Document Series to the Trusted Database Management System
Interpretation

LouAnna Notargiacomo, Victoria Ashby, Vinti Doshi, Jarellann Filsinger,
Sushil Jajodia, The MITRE Corporation
Lieutenant Colonel Ron Ross, USA, National Computer Security Center

66 Computer Security and Total Quality Management
Major Gregory B. White, USAF Academy
Mr. Lee Sutterfield, AFCSC/SRO
Mr. Chuck Arvin,CTA

76 Concept for a Smart Card Kerberos
Marjan Krajewski, Jr., The MITRE Corporation

84 Concept Paper-An Overview of the Proposed Trust Technology Assessment
Program

Ellen E. Flahavin, Patricia R. Toth, Computer Security Division, National
Institute of Standards and Technology

93 Current Endorsed Tools List (ETL) Examples Research Lessons Learned
Cristi Garvey, Aaron Goldstein, Eric Anderson,

TRW Systems Integration Group

101 Data Security for Personal Computers
Paul Bicknell, The MITRE Corporation

111 Defense Against Computer Aids
Horace a. Peele, Air Force Intelligence Command

120 E-Mail Privacy and the Law
Christine Axsmith, Esq., ManTech Strategic Associates

126 Electronic Measurement of Software Sharing for Computer Virus
Epidemiology

Larry de La Beaujardiere. Department of Computer Science, University of
California

IV

134 Enforcing Entity and Referential Integrity in Multilevel Secure Databases
Vinti M. Doshi, Sushil Jajodia, The MITRE Corporation

144 Evolving Criteria for Evaluation: The Challenge for the International
Integrator of the 90s

Virgil Gibson, Joan Fowler, Grumman Data Systems

153 An Example Complex Application for High-Assurance Systems
Frank L. Mayer, The Aerospace Corporation
Steven J. Padilla, SPARTA, Inc.

165 Experience with a Penetration Analysis Method and Tool
Sarbari Gupta. Virgil D. Gligor,

Electrical Engineering Department, University of Maryland

184 Extending Our Hardware Base: A Worked Example
Noelle McAuliffe, Trusted Information Systems, Inc.

194 Finding Security Flaws in Concurrent and Sequential Designs Using
Planning Techniques

Deborah A. Frincke, Myla Archer, Karl Levitt,
Division of Computer Science, University of California, Davis

204 A Foundation for Covert Channel Analysis
Todd Fine, Secure Computing Corporation

213 General Issues to be Resolved in Achieving Multilevel Security (MLS)
Bill Neugent, The MITRE Corporation

221 Implementation Considerations for the Typed Access Matrix Model in a
Distributed Environment

Ravi S. Sandhu, Gurprett S. Sun, Center for Secure Information Systems
& Department of Information and Software Systems Engineering, George
Mason University

236 Implications of Monoinstantiation in a Normally Polyinstantiated Multilevel
Secure Database

Frank E. Kramer, Steven M. Heffern, Digital Equipment Corporation

244 Information System Security Engineering: Cornerstone to the Future
Dr. Donald M. Howe, National Security Agency

262 Internetwork Security Monitor: An Intrusion-Detection System for Large-
Scale Networks

L. T. Heberlein, B Mukherjee, K. N. Levitt, Computer Security Laboratory,
Division of Computer Science. University of California

252 Integrity and Assurance of Service Protection in a Large, Multipurpose,
Critical System

Howard L. Johnson. Information Intelligence Sciences. Inc.
Chuck Arvin. Earl Jenkinson, CTA Incorporated
Captain Bob Pierce. AF Cryptologic Support Center, Hq. AFIC, AFCSC/SR

272 Intrusion and Anomaly Detection: ISOA Update
J. R. Winkler, J. C. Landry, PRC, Inc.

282 Issues in the Specification of Secure Composite Systems
Judith Hemenway, Dan Gambel, Grumman Data Systems

292 Issues to Consider when using Evaluated Products to Implement Secure
Mission Systems

Lieutenant Colonel William R. Price, USAF,
Headquarters Air Force Space Command (LKXS)

300 The IT Security Evaluation Manual (ITSEM)
Y. Klein, Service Central de la Securite des Systemes d'Information, Paris,
France
E. Roche, Department of Trade and Industry, London, United Kingdom
F. Taal, Netherlands National Communications Security Agency, The
Hague, The Netherlands
M. Van Dulm, Ministry of the Interior, The Hague, The Netherlands
U. Van Essen, German Information Security Agency, Bonn, Germany
P. Wolf, Centre DElectronique de I'Armement, Bruz, France
J. Yates, Communications-Electronics Security Group, Cheltenham,
United Kingdom

310 The Kinetic Protection Device
Gregory Mayhew, Richard Frazee, Mark Bianco,

Hughes Aircraft Company Ground Systems Group

319 Knowledge-Based Inference Control in a Multilevel Secure Database
Management System

Bhavani Thuraisingham, The MITRE Corporation

329 A Lattice Interpretation of the Chinese Wall Policy
Ravi S. Sandhu, Center for Secure Information Systems & Department of
Information and Software Systems Engineering, George Mason University

340 A Local Area Network Security Architecture
Lisa J. Carnahan, National Institute of Standards and Technology

350 Mandatory Policy Issues of High Assurance Composite Systems
Jonathan Fellows, Grumman Data Systems

359 Mediation and Separation in Contemporary Information Technology Systems
Marshall D. Abrams, Jody E. Heaney, Michael V. Joyce,

The MITRE Corporation

369 Metapolicies II
Hilary H. Hosmer, Data Security Inc.

379 A Model for the Measurement of Computer Security Posture
Lee Sutterfield, Todd Schell, Gregory White, Kent Doster, Don Cuiskelly,

United States Air Force

389 A Model of Risk Management in the Development Life Cycle
Captain Charles R. Pierce, USAF. Air Force Cryptologic Support Center

399 A Multilevel Secure Database Management System Benchmark
Linda M. Schlipper. Jarrellann Filsinger, Vinti M. Doshi.

The MITRE Corporation

409 The Multipolicy Paradigm
Hilary H. Hosmer, Data Security Inc.

423 The Need for a Multilevel Secure (MLS) Trusted User Interface
Greg Factor, Steve Heffern, Doug Nelson, Jim Studt, Mary Yelton,

Digital Equipment Corporation

VI

429 Network Security Via DNSIX, Integration of DNSIX and CMW Technology
Howard A. Heller, Harris Corporation

438 New Dimensions in Data Security
Karl Heinz Mundt, CE Infosys

448 A Note on Compartmented Mode: To B2 or not B2?
Theodore M. P. Lee, Trusted Information Systems, Inc.

459 Operating System Support for Trusted Applications
Richard Graubart, The MITRE Corporation

467 Operational Support of Downgrading in a Multi-Level Secure System
Doug Nelson, Greg Factor, Jim Studt, Mary Yelton, Steve Heffern, Frank
Kramer, Digital Equipment Corporation

473 PM: a Unified Automated Deduction Tool for Verification
George Fink, Lie Yang, Myla Archer, University of California, Davis

482 Potential Benefits from Implementing the Clark-Wilson Integrity Model
Using an Object-Oriented Approach

Craig A. Schiller, Science Applications International Corporation

494 Precise Identification of Computer Viruses
Lawrence E. Bassham III, W. Timothy Polk,

National Institute of Standards and Technology

503 Priorities for LAN Security - A Case Study of a Federal Agency's LAN
Security

Shu-jen H. Chang, National Institute of Standards and Technology

513 Protected Groups: An Approach to Integrity and Secrecy in an Object-
Oriented Database

James M. Slack, Computer and Information Sciences Department,
Mankato State University

Elizabeth A. Unger, Department of Computing and Information Sciences.
Kansas State University

523 Provably Weak Cryptographic Systems
John Higgins, Brigham Young University, Computer Science Department
Cameron Mashayeki, WordPerfect Corporation

534 Re-Use of Evaluation Results
Jonathan D. Smith, Admiral Management Services Ltd. Commercial
Licensed Evaluation Facility, U.K.

544 Risk Management of Complex Networks
Richard Cox, Dr. Michael O'Neill, CTA Incorporated
Lieutenant Colonel William Price, HQ AFSPACECOMILKXS

554 Role-Based Access Controls
David Ferraiolo. Richard Kuhn,

National Institute of Standards and Technology

564 An SDNS Platform for Trusted Products
Ernie Borgoyne, Motorola Inc.
Ralph G. Puga, Trusted Information Systems, Inc.

574 SDNS Security Management
Wayne A. Jansen, National Institute of Standards and Technology

vn

584 Security Management: Using the Quality Approach
Richard W. Owen, Jr., Computer Security Official Mission Operations
Directorate, Johnson Space Center, NASA

593 A Security Reference Model for a Distributed Object System and its
Application

Vijay Varadharajan, Hewlett Packard Labs

620 Security Within the DODIIS Reference Model
Brian W. McKenney, The MITRE Corporation

631 Separation Machines
Jon Graff, Amdahl Corporation

641 Software Forensics: Can We Track Code to its Authors?
Eugene H. Spafford, Department of Computer Sciences, Purdue University
Stephen A. Weeber, Lawrence Livermore National Laboratory

651 Some More Thoughts on the Buzzword "Security Policy"
David M. Chizmadia, National Security Agency

661 Standard Certification - Progression
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

670 A Tamper-Resistant Seal for Trusted Distribution and Life-Cycle Integrity
Assurance

Mark Bianco, Hughes Aircraft Company

680 A TCB Subset for Integrity and Role-Based Access Control
Daniel F. Sterne, Trusted Information Systems, Inc.

697 A Tool for Covert Storage Channel Analysis of the UNIX Kernel
David A. Willcox, Steve R. Bunch, Motorola Microcomputer Group

707 Toward a Model of Security for a Network of Computers
William H. Murray, Deloitte & Touche
Patrick Farrell, Department of Computer Science, George Mason University

717 Towards a Policy-Free Protocol Supporting a Secure X Window System
Mark Smith, AT&T Bell Laboratories

728 Use of a CASE Tool to Define the Specifications of a Trusted Guard
Robert Lazar, The MITRE Corporation
James H. Gray, III, Computer Sciences Corporation

Tutorials [Track D, Room 301 -303]

738 Tutorial Series on Trusted Systems
R. Kenneth Bauer, Joel Sachs, Dr. Gary Smith,
Dr. William Wilson,

Area Systems, Inc.
Dr. Charles Abzug, LtCdr Alan Liddle, Royal Navy,
Howard Looney,

Information Resources Management College, National
Defense University

Vlll

EXECUTIVE SUMMARIES
740 Panel: Addressing U. S. Government Security Requirements for OSI

Noel A. Nazario, Chair, National Institute of Standards and Technology
Ted Humphreys, XISEC Consultants Ltd., U.K.
Thomas C. Bartee, Institute for Defense Analysis
Dale Walters, Systems and Networks Architecture Division, National
Institute of Standards and Technology

744 Point of view: OSE Implementor's Agreements
Dale Walters, National Institute of Standards and Technology

746 Point of view: Emerging OSI Security Protocols & Techniques
Ted Humphreys, XISEC Consultants Ltd., England

752 Point of view: Security Labels in OSI
T. C. Bartee, Institute for Defense Analyses

754 Panel: Challenges Facing Certification and Accreditation Efforts of the
Military Services

Lieutenant Colonel Ron Ross, Chair, USA
Larry Merritt, AFCSC
Robert Zomback, CECOM
John Mildner. NESSEC

758 Panel: Domestic Privacy: Roll of Honor and Hall of Shame
Wayne Madsen, Chair

761 Panel: Health Issues Program
Gerald S. Long, Chair, Harrison Avenue Corporation

762 Point of View: The Benefits of Smart Card Technology in the Health
Industry

Peter M. Fallon, Toshiba American Information Systems

764 Point of View: National Health Card
B. Bahramian, Beta Management Systems, Inc.

765 Point of View: The Optical Card as a Portable Medical Record
Stephen D. Price-Francis, Canon-Canada, Inc.

766 Point of View: Patient Data Confidentiality in the Health Care
Environment

Marc Schwartz, Summit Medical Services, Inc.

768 Panel: Information Technology Security Requirements
D. Gilbert, Chair, National Institute of Standards and Technology
N. Lynch, National Institute of Standards and Technology
Dr. W. Maconochy, National Security Agency
S. Pitcher, Department Of Commerce
M. Swanson, National Institute of Standards and Technology

770 Panel: International Data Privacy: Roll of Honor and Hall of Shame
Wayne Madsen, Chair

774 Panel: Multilevel Security (MLS) Prototyping and Integration: Lessons
Learned and DoD Directions

C. West, Chair, Defense Information Systems

xx

775 Workshop: New Security Paradigm Workshop
Hilary Hosmer, Chair, Data Security, Inc.

777 Point of view: Managing Complexity in Secure Networks
Dr. David Bailey, Galaxy Computer Services

784 Point of view: A New Paradigm for Trusted Systems
Dr. Dorothy E. Denning, Georgetown University

792 Panel: Perspectives and Progress on International Criteria
Eugene Troy, Chair, National Institute of Standards and Technology
Lieutenant Colonel Ron Ross, USA
D. Ferraiolo, National Institute of Standards and Technology
Eugene Bacic, Canadian System Security Centre
Jonathan Wood, Department of Trade and Industry, U.K.

795 Panel: Perspectives on MLS System Solution Acquisition - A Debate by the
Critical Players Involved

Joel E. Sachs, Chair, Area Systems, Inc.

799 Panel: Security Protocols for Open Systems
Paul A. Lambert, Motorola, Inc.
David Solo, BBN
Doug Maughan, National Secuirty Agency
Russell Housley, Xerox
Dale Walters. National Institute of Standards and Technology
Mike White, Booz Allen & Hamilton

800 Panel: "TMach" A Symbol of International Harmonization
Ellen E. Flahavin, Chair, NIST
Brian Boesch.DARPA
Dr. Martha Branstad, Trusted Information Systems, Inc.
C. Ketley, U.K. Government
Klaus Keus, German Government

801 Panel: The Trusted Product Evaluations Program Process Action Team
S. Nardone, Chair, National Security Agency

802 Panel: Virus Attacks and Counterattacks Real-World Experiences
James P. Litchko, Chair, Trusted Information Systems, Inc.
Janet Keys, Headquarters NASA
Louise Mandeville, Miller, Balis & O'Neil. P.C.
George Wellham, MNC Financial. Inc.

Authors Cross Index

Abrams,M. D 359
Abzug,C 738
Archer, M 473
Ashby.V 57
Anderson, E 93
Anderson, T.E 1
Archer, M 194
Arnold, J. L 44
Arvin, C 66, 252
Axsmith, C, Esq 120
Bacic.E 792
Bahramian, B 764
Bailey, D 777
Baker, D. B 44
Bartee,T.C 752
Bassham III, L. E 494
Bauer, R. K 738
Belvin, F 44
Bianco, M 310,670
Bicknell,P 101
Boesch, B 800
Borgoyne, E 564
Bottomly, R.J 44
Branstad,M 800
Bunch, S.R 697
Carnahan, L. J 340
Chang, S.H 503
Chizmadia, D. M 651
Chokhani,S 44
Cox, R 544
Cuiskelly, D 379
de La Beaujardiere, L 126
Denning, D. E 784
Doshi,V 57,134,399
Doster,K 379
Downs, D. D 44
Factor, G 423, 467
Fallon,P.M 762
Farrell.P 707
Fellows, J 350
Ferraiolo, D 554, 792
Filsinger,J 57,399

Fine.T 204
Fink,G 473
Flahavin, E. E 84, 800
Fowler, J 144
Frazee, R 310
Frinck, D. A 194
Gambel, D 282
Garvey, C 93
Gibson, V 144
Gilbert, D 768
Gligor,V.D 165
Goldstein, A 93
Graff, J 631
Graubart, R 459
Gray, III, J.H 728
Gupta, S 165
Hamilton, D 9
Heaney.J.E 359
Heberlein, L. T 262
Heffern,S 423,467
Heller, H. A 429
Hemenway, J 282
Heffern.S.M 236
Higgins.J 523
Hosmer,H 369,409,775
Housley, R 799
Howe, D. M 244
Humphreys, T 746
Jajodia, S 57,134
Jansen.W. A 574
Earl Jenkinson 252
Howard L. Johnson 252
Michael V. Joyce 359
Ketley, C 800
Keus.K 800
Keys,J 802
Klein, Y 300
Krajewski, Jr., M 76
Kramer, F. E 236,467
Kuhn,R 554
Lambert, P. A 799
Litchko, J. P 802

XI

Authors Cross Index

Long.G.S 761
Landry.J.C 272
Lazar,R 728
Lee,T.M.P 448
Levitt, K.N 194,262
Liddle, A., LtCdr, Royal Navy 738
Looney, H 738
Lynch, N 768
Maconochy. W. V 768
Madsen.W 758,770
Mandeville, L 802
Mashayeki.C 523
Maughan,D 799
Mayer, F. L 153
Mayhew.G 310
McAuliffe.N 184
McKenney, B.W 620
Merritt, L 754
Mildner,J 754
Mukherjee,B 262
Mundt,K.H 438
Murray, W. H 707
Nardone.S 801
Nazario, N. A 740
Nelson, D 423,467
Neugent, W 18, 203
Neumann, P. G 28
Notargiacomo, L 57
O'Neill, M 544
Owen,Jr.,R.W 584
Padilla,S.J 153
Peele,H.B Ill
Pierce, R., Capt, USAF 252,389,661
Pitcher, S 768
Polk,W.T 494
Price, W.R.,Lt Col, L'SAF 292,544
Price-Francis, S. D 765
Proctor, N. E 28
Puga.R.G 564
E. Roche 300
Ross, R., LTC, USA 57,754,792

Sachs, J 738,795
Sandhu.R.S 221,329
Schell,T 379
Schiller, C. A 482
Schlipper, L. M 399
Schwartz, M 766
Slack, J.M 513
Smith, G 738
Smith, J.D 534
Smith, M 717
Solo, D 799
Spafford,E.H 641
Sterne, D. F 680
Studt.J 423,467
Suri.G.S 221
Sutterfield, L 66,379
Swanson, M 768
Taal, F 300
Thuraisingham, B 319
Toth.P.R 84
Troy,E 792
Unger.E.A 513
VanDulm,M 300
Van Essen, U 300
Varadharajan, V 593
Walters, D 744,799
Weeber.S.A 641
Wellham,G 802
West,C 774
White, G. B., Maj, L'SAF 66,379
White, M 799
Willcox,D.A 697
Wilson, W 738
Winkler.J.R 272
Wolf.P 300
Wood,J 792
Yang.L 473
Yates,J 300
Yelton,M 423,467
Zomback, R 754

xn

ACCREDITATION:
18 IT A SECURITY REQUIREMENT

OR A GOOD MANAGEMENT PRACTICE?

Thomas B. Anderson

U8ATREX International Inc.
7926 Jones Branch Drive, Suite 410

McLean, VA 22102-3303
TEAnderSOnQDOCRMASTER.NCBC.MIL

Abstract

This paper describes one of many possible concepts for accrediting
an automated information system (AIS). Providing a contrast
between certification and accreditation the reader will hopefully
gain a better understanding of the accreditation process. Ideally,
through good management and security practices, accreditation is
accomplished before the commencement of system operations. This
paper presents a process that could be used by Information System
Security Officers (ISSOs) to accredit systems operating with
outdated or no formal accreditation.

Keywords

accreditation certification configuration contingency
defacto-accreditation evaluation risks safeguard threat

Introduction

Accreditation, evaluation, and certification: are they really one
in the same or merely pieces of the overall puzzle? Who is
responsible for each piece? Why do we care? These are some of the
basic guestions in discussion regarding security and the use of
automated information systems. If you read the proliferation of
government publications on accreditation and certification you will
discover the lack of definitive guidance on the what, when, and how
of accreditation and/or certification. In some instances the
reguirements for certification and accreditation even appear to be
guite similar, if not the same. For the purposes of this paper I
would like to define certification as simply the documentation and
verification that security features, assurances, and safeguards are
in place to protect the AIS. Furthermore, I would like to define
accreditation as simply the managerial acceptance of the risks
involved with operating the AIS in a given manner based on the
certification evidence provided.

Every automated information system in operation today has been
accredited by its respective organizational management. Some
systems have been formally accredited. This accreditation has been
documented in the form of an accreditation package and an
accreditation statement signed off by an official of the
organization. Others have what this author would refer to as a
"defacto-accreditation". The day that management allowed the

system to begin and continue processing information there was an
implied or defacto managerial acceptance of all the known risks
involved with the operation of the system in the given environment.

Security Requirement vs Management Practice

Although most organizations consider accreditation a security
reguirement, it is really a culmination of good management and
security practices. Through normal management practices the major
portions of the documentation in support of an accreditation should
exist for all AISs regardless of the sensitivity or classification
of data to be processed. In most cases this documentation is
utilized in the day to day management of the system. The following
briefly depicts what I consider the major elements of this
documentation to be; the depth and detail of this documentation are
site and management dependent.

- Schematic drawings of the system showing peripheral
devices, communications eguipment, and all external
interfaces. These types of drawings are usually found in the
Operating Systems Maintenance and or the Computer Operations
sections of an organization.

- A list of hardware components (corresponding to the
schematic drawing above) and major software packages utilized.
This listing should contain such information as manufacturer,
model, serial number, generic device type, and location for
each piece of hardware. Manufacturer, product name, generic
product type, version, and release numbers should be included
for each software package installed on the system. This type
of information is the same as the information that should be
used in the configuration management process for the system.

- Copies of all standard operating procedures (SOPs) which
pertain to the use/security of the system. Containing step by
step procedures, these SOPs should detail personal and
organizational responsibilities. They should delineate the
duties of each individual involved in the operation,
maintenance, and security of the information system.

- Facility Risk/Threat Analysis. Without identification of
potential risks or threats management has no way of
determining if adeguate precautions have been taken. There
are many different ways to obtain a risk or threat analysis;
some are guantitative and others are gualitative. The
risk/threat analysis approach will vary from one organization
to the next. There is no recommended best approach and the
method used should be determined by the organization's need,
policy, and management. The only stipulation is that a
risk/threat assessment be performed, because a conscientious
decision by an accreditation authority cannot be realistically
made without some form of risk/threat analysis.

- Configuration Management Plan. The configuration management
of an information system is paramount to its management and
security. The introduction, removal, and or change to the
components of the system (both hardware and software) must be
strictly controlled. Strict adherence to the configuration
management plan is essential to insure that security is
provided to the overall information system.

- Contingency Plan. A complete and comprehensive contingency
plan is an essential part of good management for any
information system. This plan should cover every possible
situation from worse case scenarios to minor disruptions.
Responsibilities and actions to be taken should be clearly
identified. Developing a good contingency plan is only half
of the problem; the plan should be fully and functionally
tested periodically. This testing should not be just a walk
through, but an actual simulation of a disaster.

What About Trusted Products?

The National Computer Security Center (NCSC) evaluates the security
controls of commercially produced general purpose operating systems
for use by governmental departments and agencies using the
Department of Defense Trusted Computer System Evaluation Criteria
(TCSEC) [3]. The TCSEC, commonly called the "Orange Book",
outlines criteria for evaluating the security controls or features
built into an automated system. The criteria is divided into two
basic types of reguirements; security feature reguirements and
assurance reguirements. Accomplishing the evaluation independent
of future applications and irrespective of the physical environment
of the hardware, the NCSC awards a level of trust rating. The
level of trust rating for each system that successfully completes
the evaluation process ranges from D (Minimal Protection) through
Al (Verified Design). "It must be understood that the completion
of a formal product evaluation does not constitute certification or
accreditation for the system to be used in any specific application
environment." [3]

Certification

For each automated information system processing sensitive
unclassified information within the federal government, Office of
Management and Budget (OMB) Circular A-130 [2] requires application
system certification. An official of each agency must certify that
the security safeguards of the application system are adequate,
have been tested, and meet all applicable policies, standards, and
regulations. The safeguards do not have to be built into the
hardware or software. Safeguards can be procedural methods,
personnel security programs, risk/threat analysis, contingency
plans, etc. Certification addresses the safeguards built into the
hardware, coded into the software, and the other non-automated
safeguards that enforce the security policy of the system. For
non-automated safeguards, certification covers the existence of
adequate and testable procedures, plans, and programs that meet all

applicable policies, standards, and regulations. Depending upon
the mode of operation for the AIS these non-automated safeguards
could be as important if not more important than the safeguards
found within application software or the safeguard features built
into the hardware. Since A-130 reguirements for certification are
guite similar to the reguirements for accreditation of systems
processing classified information, some organizations have taken a
stance that sensitive unclassified AISs need to be accredited.
Others believe that only the applications software that processes
sensitive unclassified data needs certification.

Why Do We Accredit?

If the security controls of commercially produced general purpose
operating systems are evaluated and assigned a level of trust, and
the system applications and associated safeguards are certified to
be adeguate and meet all applicable policy, regulations and
standards then where does accreditation fit in?

As previously stated, the NCSC evaluation does not take into
consideration the application to be processed or the physical
environment of the hardware. Certification, in most cases, only
looks at the specific application or safeguard to ascertain its
adeguacy and compliance with policy, regulatory and standards
reguirements. In order to establish that it is truly acceptable to
process sensitive unclassified and or classified information on an
automated information system, management must be willing to accept
the risks of operating the system in a given environment using
established procedures and safeguards. This is where accreditation
comes into play.

Accreditation is the final and most significant piece to the
computer security puzzle. This is the first time that the hardware
and operating system, with specific applications, in a given
physical environment, using established procedures and safeguards
based on identified risks, are considered from a security point of
view. Using the certifications and their associated certification
evidence to support the accreditation reguest, management must make
a conscientious decision whether or not to allow the system to
process at the reguested level.

Computer systems operate in various configurations, such as stand-
alone personal computers (PCs), local area networks (LANs), wide
area networks (WANs), mini-computer and mainframe systems
processing information ranging from unclassified to highly
classified. Many of these systems may be formally accredited by
either a Designated Approving Authority (DAA) or a Designated
Senior Official (DSO) of a governmental organization, but others
may be operating with outdated accreditation or simply no
accreditation consideration at all (defacto accreditation). We
find the PC system is usually put into operation without regard for
accreditation while the mini computer and mainframe system may have
been accredited at one point in time, but most likely the
accreditation has not been updated or maintained with any

regularity. Local area and wide area networks pose many
accreditors with the problem of establishing the scope or bounds of
an accreditation.

Accreditation Process

Ideally, the accreditation process begins at the system concept
development stage with formal accreditation being accomplished
prior to the actual commencement of system operation. An
accreditation plan should be developed at the beginning of the
system life cycle and at individual system development milestones
certifications and certification evidence should be gathered to
form the basis of an accreditation package. The depth and detail
of information necessary for an accreditation package should be
commensurate with the sensitivity and or classification level at
which a system is to be accredited. The accreditation of computer
systems, whether they are already in operation or newly installed,
requires tremendous cooperation and coordination between the
Information System Security Officer and all involved in the
development, fielding, and use of the information system. Having
stated the ideal situation where the accreditation process begins
at the concept development stage, the remainder of the process
(Figure 1) outlined in this paper will deal with the real world
situation facing many Information System Security Officers; the use
of information systems that are operating unaccredited/defacto
accredited or with outdated/expired accreditation. The documentary
requirements are the same for both new installations and existing
systems.

^Identify

Accredit Categorize/Prioritize

Recommend Gather Documentation/ST & E

Analyze
and

Draft Report

Figure 1. Proposed Process for Accreditation

Identify

Identification of the computer systems requiring accreditation is
the first step to the successfully accreditation of an

organizations computer systems. The basic approach to this task is
to go through the organization and physically identify each
computer system and its configuration. The primary items of
interest for this data gathering effort are equipment type,
location, classification level and extent of existing
accreditation.

Categorize/Prioritize

Once each system has been identified it should be categorized (i.e.
PC, LAN, mini/mainframe, etc) and each of these categories should
be further broken down by sensitivity/classification level of data
to be processed. Once all of the organization's computer systems
have been identified and categorized, the Information System
Security Officer should assign a priority to each system and
category for an accreditation team to prepare accreditation
documentation. The accreditation team should consist of
technically qualified individuals who can rapidly grasp the concept
of operation and independently assess the information system's
compliance with the organization's security requirements/needs.

Gather Documentation/System Test and Evaluation

Using the prioritized list the accreditation team should physically
survey each system. The team should meet with the functional
manager controlling the AIS to gain a better understanding of the
concept of operations for each system and collect the documentation
to compile a security profile (e.g., copies of standard operating
procedures (SOPs), facility risk/threat analysis, any plans
associated with the computer system (Contingency, Configuration
Management, etc), and any previous survey, inspection or
accreditation documentation). Depending on the mode of operation
(i.e., dedicated, system high, etc) the team may need to perform
system and security testing (System Test and Evaluation (ST&E)).
Testing for those systems already in place would serve a dual
purpose: 1) to verify that system security features exist and
function properly; and 2) to verify that these security features
have been properly implemented.

Analyze and Draft Report

After careful analysis of the information gathered by the team a
draft accreditation report should be compiled. The report should
identify the security level and mode of operation, note key
vulnerabilities (both those identified by physical inspection and
those identified through system testing), outline any exceptional
circumstances pertaining to the operation at the requested security
level, include a discussion on actions taken to reduce the risks,
and provide justification for why these risks should be accepted.
The report should also describe the concept of operation, providing
information concerning features of operational and security modes.
This would include descriptions of hardware, software, significant
applications, interfaces, user population, and a description of
features and or procedures from the various security disciplines

which support the operation. Attachments to the accreditation
report should include the certifications and certification evidence
such as the security profile consisting of standard operating
procedures, associated plans, system and security test results,
risk/threat analysis, and any previous survey/inspection reports
(e.g. Inspector General reports, etc.).

To support the accreditation, some organizations might reguire such
additional items as duty appointments for all system security
related personnel, security checklists, non-security related plans
associated with the system (e.g., training plan), etc. The types
of documentation and the level of detail of each attachment to the
accreditation report will be site/organization dependent. Each
organization will need to use the sensitivity of the data to be
processed and the complexity of the information system as their
rule and guide for accreditation documentation reguirements.

The draft accreditation report should now be coordinated with the
functional manager to ensure the correctness of the concept of
operations and the team's understanding of the security posture of
the system. The Information System Security Officer, in
conjunction with the accreditation team and the functional manager,
should review and assess each report to finalize an accreditation
package (the accreditation report with attachments).

Recommend

Based on the accreditation report and its attachments, the
Information System Security Officer will take one of three possible
actions:

1. Forward accreditation report to the Designated Accrediting
Authority or Designated Senior Official with a recommendation
for full accreditation;

2. Forward accreditation report to the Designated Accrediting
Authority or Designated Senior Official with recommendation
for an interim accreditation pending the resolution of
identified deficiencies; or

3. Return the accreditation package to the functional manager
with a list of operational and or security related
deficiencies that reguire correction prior to the
accreditation of the system.

The accreditation package should be treated as a living document
with elements continually updated as the system evolves. It is
recommended that a cycle be established for the periodic review of
the systems currently accredited. The freguency of this review
should be determined by management, based on the sensitivity of the
information to be processed and the magnitude of change to the
existing system.

Conclusion

Every AIS in operation today has been accredited, either defacto or
formally and conscientiously, because ultimately someone in
management has accepted the risks of operating the AIS in its
current environment. Hopefully, if that someone is you, you are
now asking yourself "How was my system accredited; defacto or
formally"?

Acknowledgements

For their comments and suggestions during the preparation of this
paper, the author would like to express his thanks and appreciation
to William Hawkins and Michael Fuksa.

References

[1] Department of the Army, Security: Information Systems
Security, 1 August 1990, Army Regulation No. 380-19

[2] Office of Management and Budget, Management of Federal
Information Resources, December 1985, OMB Circular No. A-130

[3] Department of Defense, Department of Defense Trusted Computer
Security Evaluation Criteria, 15 August 1983. Department of
Defense 5200.28-STD

[4] National Computer Security Center, Glossary of Computer
Security Terms, 21 October 1988, NCSC-TG-004, Version 1

[5] National Computer Security Center, Information System Security
Officer (ISSO) Guideline, 1 November 1990, NCSC-TG-0??,
Version-1 DRAFT

[6] U.S. Department of Commerce/National Bureau of Standards,
Guideline for Computer Security Certification and
Accreditation, 27 September 1983, FIPS PUB 102

APPLICATION LAYER SECURITY REQUIREMENTS OF A
MEDICAL INFORMATION SYSTEM

Deborah Hamilton
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, California 94304-1126

Abstract

While a lot of effort has gone into evaluating the security needs of DOD applications, many com-
mercial applications have not been sufficiently evaluated. This paper discusses the application level
security requirements of a commercial application in part to stress the differences between the
TCSEC requirements and some commercial application needs.

There are several major distinctions between typical DOD type systems and the commercial appli-
cation evaluated here, a medical information system. Foremost is the importance of having access
to the data when necessary even at the cost of the confidentiality of the data. Access controls must
be strict on medical records; however, the medical team must be able to bend the rules in emer-
gency situations. These emergency situations must still be carefully and securely monitored. The
second major distinction is the difference between the power and administrative setup. A medical
system can not be modeled hierarchically; it is more closely represented by a lattice structure. The
third distinction is the importance of maintaining all data such that it can be admissible as court
evidence.

The objective of this paper is to emphasize the need for more research on non-DOD security as well
as to highlight important but yet unsolved and interesting research topics. This paper discusses
the basic application level security concerns for a computerized medical information system and
analyzes the requirements of the security concerns. It concludes by summarizing the most important
requirements.

Introduction

Our health care system is at risk and desperately requires improvement. According to a recent gov-
ernment study by the Institute of Medicine [3], computerization of the health care system will provide
better and more efficient care while cutting costs. The Institute of Medicine [5] documented in their
study that medical records were unavailable in up to 30 percent of patient visits. Medical records may
be unavailable because they have been misplaced, they have not been brought over from the patient's
previous health care providers or there was not enough time to physically retrieve the records. This
forces physicians to rerun tests and prevents dangerous trends from being spotted. Availability of
medical data is especially important during emergency situations regardless of whether the patient has
established a history at the particular institution.

Medical care is improved and costs are lowered when medical information can conveniently be shared
among health care team members, researchers, accountants, administrators, health regulators and in-

surance groups. Much time and energy can be saved if paperwork between the above mentioned groups
is minimized and information is exchanged electronically. ' Physicians benefit from being able to con-
sult with specialists and share patient data. Research groups benefit greatly from anonymous patient
information. Physicians need access to networks for on-line databases with medical information and
news groups to keep in touch with the many new medical developments. Ideally, a medical system would
allow physicians to share information with specialists, compare patient data with diagnostic informa-
tion, link patient data with family health history, and access the most recent research information. In
addition, the amount of information physicians manually sort through in order to complete a thorough
diagnostics job has become unmanageable without computer tools. 2

The government and some major insurance companies have already made several proposals to allow
electronic transfer of patient data among health care providers and insurance companies thus reducing
paperwork and preventing duplicate testing. The Health and Human Services department has proposed
both a national database for patient health data and a nationwide electronic billing system. The first
proposal involves patients carrying a smart card which allows access to a centralized database containing
patient records. The most recent proposal involves patients carrying a 'Credit Card' containing their
entire medical history which would then be used to link into the insurance company and provide
immediate notification of insurance coverage 3. There are hopes that some part of an electronic billing
system may be in place within a year or two.

Computerized medical systems are necessary and are quickly emerging; however, some important issues
remained unsolved. Security is one such issue. The success of systems may ultimately hinge on the
security aspects since "one catastrophic incident involving a computer-based patient record system could
set the legal status of computer-based record systems back decades" [10]. Since security is an important
but largely unevaluated aspect of medical applications, we have chosen to identify and evaluate the
security requirements of a medical information system similar to but more sophisticated than the model
being proposed by the government.

This paper is based on information from various sources: transcripts from several interviews with nurses,
doctors and other staff in hospitals and clinics; documents on the legal regulations of patient data 4;
academic research; [11] industry [10] [7]; and government studies [3].

Scope

The number of security issues associated with security for medical information applications is vast.
The scope of this paper is limited to application level concerns such as data integrity, non-repudiation,
confidentiality, authentication, auditing, and access control. Other very important issues are not dis-
cussed here but the intent is not to deemphasize them. These issues include fault tolerance, recovery
mechanisms, secure operating systems, secure networking, secure databases, security policies, politics,
reluctance to using or trusting computers, password generation, training, ease of use, system mainte-
nance and administration, viruses, worms, secure backups, secure datastorage, secure hardware, human
entry mistakes and quality assurance.

'Some physicians estimate that approximately 45% of their time is spent on paper work for insurance companies.
2 Refer to The Computer-Based Patient Record [3] for a more in-depth discussion of the need to computerize medical

systems.
3See the San Francisco Chronicle - June 22, 1992 - Front page - U.S. Medical 'Credit Card' Proposed
4 See appendix B of The Computer-Based Patient ftecord [3]

10

Security Concerns

A computerized medical system has many strenuous and complex constraints and requirements. An
application used in medical diagnosis and record maintenance must work flawlessly because of the
lives that depend on it. The consequences of inadequate security can be life-threatening or financially
devastating to the health care group: a person could be given improper medical treatment or refused
treatment; a lawsuit could result if security is breached or data integrity threatened.

Security in medical applications is necessary for three reasons: to prevent bad medical care; to prevent
abuse such as unauthorized access to information or prescription drugs; and to provide accountable
records for malpractice cases. Incorrect patient data could result in bad medical care or could prevent
one from getting health insurance. Information leakage of highly subjective diagnoses could prevent,
someone from getting insurance or a job. This problem will only get worse as we are able to gather more
information on patients. For example, the ability to read genes might allow physicians to determine
whether a patient is highly susceptible to alcoholism, colon cancer, Alzheimer's or diabetes. Such
information is helpful in the right hands but very dangerous in the wrong hands.

Medical applications have one very important requirement that other fields typically do not. A life
may hinge on the ability to get access to all of the information at any time. Many people in the
medical field believe that access to medical information should not be severely restricted but rather
carefully audited. As one paper describing a medical application put it "We argue that the single, most
important success factor of this project is in providing immediate convenient access to patient's clinical
information, whenever needed, from anywhere... [7]".

Current paper record systems are carefully regulated with complex find constantly changing rules to
provide safety and confidentiality and to ensure admissibility into court in case of a lawsuit. These
rules, however, must be carefully re-evaluated for computerized systems. When medical information is
made available from a computer application, a breach of security becomes more tempting due to the
perceived ease of access to massive amounts of patient information and the perceived anonymity. Leaks
in security and mistakes in data integrity become even more devastating in a computerized system since
humans may not always be available to filter or review the data.

Requirements and Analysis

This section describes the requirements of current non-computerized medical information systems and
analyzes the security requirements of future computerized systems.

Data Integrity and Non-repudiation

Data integrity is of the utmost importance in a medical system. For a medical application to suc-
ceed, there must be some mechanism which insures both highly reliable and verifiable data during
storage, transmission and display. Data integrity mechanisms should be available for many forms of
data including text, images, voice, and video.

In any successful medical application there must be a mechanism to achieve the same reliability as
written signatures and with the same ease. A medical system must have a very good mechanism for
verifying who has entered, agreed to, or ordered what. Whether a physician has entered notes or
dictated them to someone else, as often occurs, the physician's written signature is an effective method
of verifying that information has been entered on their behalf or at least, that they have read and agreed

11

to the information thereby taking responsibility. There must be a mechanism to sign for another's entry
but still retain information on the original enterer of the data. Signatures are also necessary to show
others that the physician gives permission, for example, to dispense a prescription. Patient signatures
are necessary, as well, to indicate that the patient has read and understand information and/or given
permission for a procedure.

Ideally, the signature mechanism would work for both the medical staff and the patients. If a patient's
permission can not be stored directly in the computer, hard copies of patient consent forms will have
to be stored separately from the records or scanned in - possibly resulting in lost forms or too little
resolution for verification of the signature. To store the patient's permission on-line, there must be an
simple but effective method of producing and entering secret keys. These keys could be derived from
patient passwords, smart cards or biometric mechanisms. However, they must not be passive forms of
entry such as a digital fingerprint which can be taken while asleep, rather the patient must be awake
and fully aware that they are giving permission.

Signatures must be available independent of whether the information is in clear-text or encrypted and
must be completely tamper-proof in order to be admissible in court. A secure date and time stamp
should also be retrievable on the signature if possible. In addition, there must be a mechanism to ensure
that the signature is interwoven with the appropriate information to ensure that the signature is not
reused or separated. Those with only read permission should be able to read the signatures associated
with the data. The signatures should be decryptable for a long time - hopefully for the life of the
information 5.

Medical systems require a mechanism to ensure that a request is submitted once and only once. For
example, the following abuses must be prohibited: a patient copying an order for a prescription and
resending it at a later date to obtain refills without authorization; a pharmacist copying prescriptions
to resubmit multiple times thus making records account for missing drugs.

In order for medical records to hold up in court, records must be kept up-to-date and contain the name,
time and date of any changes or additions to the records. Deletions must be logged as well and most
"deleted information" saved 6. Regulations stipulate that the records remain easily modifiable and
that the most up-to-date information is easily identifiable. Copies of records must be trustworthy so
creating, accessing and storing records must be tightly controlled.

Authentication

A secure authentication mechanism is very important in a medical information application. The mech-
anism must be simple and easy to use since the health care team is typically uncomfortable and unfa-
miliar with computers. Since individual accountability is a. must, individual ids are be required. The
authentication mechanism should not falsely deny authorized users.

To provide secure authentication, users must log off immediately after relinquishing physical control over
the keyboard. Not logging out results in an authentication problem since the system is unable to ensure
that the keyboard has not switched hands. Medical professionals usually resist logging off systems
immediately after relinquishing physical control over the key board unless login is easy and painless,
startup quick and the physical state of the user workspace retained when logging out. Health care
providers are frequently interrupted and will not think about logging out when called for an emergency.

5One administrator of a liospii.nl that plans to go completely to electronic storage of patient data in four months
indicated that they were planning oil using digital signatures encrypted with the user's passwords. These passwords must
be changed every six weeks by the users and there are no plans to store the old passwords. This mechanism will not stand
up to regulations nor will it allow records to be admissible in court.

Regulations stipulate which information can actually be deleted.

12

Since authentication is such a vital problem in medical applications, a mechanism for automatic logout
should be considered. However, a simple automatic logout mechanism which logs users out after n
seconds or minutes of not using the machine would be insufficient since a small n is very inconvenient
and will cause users to find methods to bypass security and a large n creates security problems. It is
important to find a method of letting the system know when the users stray from the computer.

Possible changes in legislation may soon grant patients greater access to medical records in order to check
for inaccuracies. If so then ideally patients would also be able to use the authentication mechanism.
This would require a mechanism that can handle a very large number of users especially in a centralized
system where ideally every man, women and child would have a record on the system.

Auditing

Many people in the medical profession believe that it is highly preferable to audit access and actions
rather than to severely curtail these activities. A medical information application should have a very
secure and reliable audit system to detect abuses and problems. The level of auditing should be variable
based on the application, the user, and the mode of operation (e.g. normal, emergency). Secure
auditing is needed to make sure that abuses are detected. The audit trail should detect unauthorized
reads and modifications, malfunctions, and corruptions. Secure auditing is also needed for tracking
down inaccurate data. For example, if a lab test result is entered incorrectly and later corrected, there
must be a mechanism to determine where the incorrect data was used and who must be notified of the
correction. Otherwise, future treatment may be based on incorrect information. Auditing to detect,
exploitation of covert channels, inference and aggregation attacks would also be helpful.

Auditing should take place on both record and application levels. For example, an audit trail must be
kept of who accessed which files and who is currently looking at them, as well as who has ordered which
tests and which prescriptions and who has modified what information within the patient record. The
audit trail must also keep track of who has forwarded what information and to whom. It. is important
to collect and correlate audit data from a number of different levels, stages and abstractions for the
information to be meaningful. This will determine clues such as whether the user knew what he was
looking for. For example, did the user know what keyword should be used in a search or did they guess
multiple times before coming across a correct one. There must be a method, however, of eliminating
superfluous or misleading information to prevent excessive record keeping at the same time a.s retaining
the essential information necessary as evidence in possible court, cases.

Access Control and Confidentiality

Medical applications have very demanding access control needs. Access controls should be dynamic
and flexible yet strictly regulated and operated close to the least privilege principle when possible.
However, the most important characteristic is that no authorized person should ever be refused access
when needed especially in an emergency situation. In addition, even unauthorized personal might
need to have access to patient records under emergency situations. It is not always possible to find a
person able to give access permission in an emergency situation. Therefore, it is better to allow access
in emergency situations and review the situation afterwards than to deny access. The government's
proposals discussed at the beginning of this document allow patient data access to be set, up in two
ways: one could allow access only to those that have the patient's card or one could allow access of the
patient database to everyone who has access to the system. A solution in the middle would be better.
For example, access is given to a predefined list of health care providers for each patient. In addition,
a predefined set of users are allowed to access any patient's records when they declare an "emergency"

13

mode. When they enter this mode, however, all of their actions are monitored and evaluated at a later
time to prevent abuse.

Users should be able access a medical application anywhere in the local network and possibly off-site
as well. One medical application's development team noted that physicians welcomed their computer
application especially since they could now access information from home. Security of remote access,
however, was not discussed [9].

Medical systems are not accurately represented in hierarchical fashion. Not only are there many different
types of health care workers but their rights are not hierarchical; many rights overlap. The model of
authority is most accurately modeled with lattice structure where for example, physicians have a lot of
power over modifications to patient records but have little power or no power over auditing controls.
System administrators have power to modify the auditing controls but yet have no power to modify
patient records. The following list illustrates the complexity of access to users. Described below are
some examples of people who may need access to various patient data information:

• Physicians - for background information; to keep track of patient notes, current status, diagnosis
and treatment; for literature searches; for consulting with other physicians both publicly (notes
groups) and privately (electronic mail); for access to on-line medical databases; for comparison of
current patient's symptoms with other patients' symptoms; to provide links into decision support,
systems 8

• Nurses - for information on patient preparation to be done (e.g. blood pressure check); for
recording patient statistics and relevant information

• Clerical staff - for appointment management; for hospital admissions; for maintaining patient,
information such as addresses; for registering patients

• Technicians - for information on specific tests to be performed; to enter test results

• Computer administrators - to make sure the system is running properly; to fix problems

• Hospital administrators - to determine statistics on patient load, efficiency, number of referals
etc. to be used in evaluating and improving quality assurance in the hospital or clinic; to allocate
resources; to develop and manage budgets

• Accountants - for billing purposes

• Insurance agents - to pay clients and providers; to check the validity of claims

• Researchers - to gather clinical information for studies 9

• Social workers - to (lag possibly suicidal patients; to determine possible abuse cases

• Pharmacists - for drug information; for prescription information; to determine possible side-effects
and complications

• Mental health care providers - to store data on medications; to check for possible complications

' In this paper specific labels have been used for medical staff such as nurse, however, job duties arc' hardly ever broken
down this cleanly. One person may perform some "nurse duties" and some "clerical duties". Job duties and titles vary
immensely among the various clinics and hospitals.

8On-line information used in conjunction to decision support systems are already in use in some emergency rooms.
They have been so successful that some insurance companies give a 20% decrease in malpractice premiums to those that
use it in Massachusetts.

9The need for correlated anonymous patient data is expanding continuously. Medical care will improve at a faster rate
once patient data can be compared electronically. Less money will be needed for studies if on-line patient data can be
used for the first stage studies.

14

• Dentist - to determine drug allergies; to determine pos^ .-implications

• Patient - to review patient data for accuracy 10

The above list indicates that access cannot be represented b\ rarchical structure. Many different
people need access to different pieces of the records but no one I have access and modification rights
to all the pieces. Access, addition, modification and deletion n&iits must be separately assignable. For
example, pharmacists may need access to a patient record to check for interactions between medications
as well as to add notes to the medication section of the patient records. However, they should not be
able to change other parts of the record. In addition, regulations require that deleting information be
permitted only under very strict situations and thus must be more tightly controlled than the other
rights. It is critical that massive copying, searching and modifying of patient records be very tightly
controlled to ensure patient confidentiality.

Some portions of the patient record are especially important to secure, for example, HIV-antibody test
results, records of drug and alcohol abuse, psychiatric records, and records of celebrity patients. In
addition, private information may be given in confidence to the physician in order to aid patient care
such as sexual preference or abortion history. Some portions, however, must be more openly available.
A system should be able to, for example, allow easy access by any health care worker to notes on
whether a patient's bodily fluids require special precautions. Also, treatments should be available to
billing groups and insurance companies so that information may be shared or at least forwarded.

In addition to the many different types of access rights, the access relationships must be very flexible
and dynamic. Ideally, it should be possible to configure the system to regulate access based on any of
the following:

• Job (i.e. physician, internist, subinternist, chief resident, nurse, technician, accountant, security
officer l')

• Relationship to patient (i.e. primary or consulting physician)

• Aie;i of specialization (i.e. pediatrics, internal, radiology, dietitian, intensive care)

• Patient status (i.e. inpatieht versus outpatient, under-treatment)

• Individual (i.e. one nurse may need access to a particular set of patient's data)

A flexible role-based access mechanism is important. It would l>o difficult to shift capabilities in a
medical clinic without a role-based system. Nurses are asked to support particular doctors but may
be reassigned frequently. Primary physician roles are frequently changed which would entail only
one change in a role-based system and possibly many on a capability-based system depending on the
organization. It would be tempting in a capability-based system to assign someone to a job category and
allow the maximum privilege to that job to ensure access when needed. Since many of the responsibilities
overlap between job categories, maximum privilege for each one could leave access wide open. It may
l>r sufficient for all physicians to have access to all patient data records, for example, if their access is
monitored sufficiently. However, this would entail much more auditing and monitoring than would be
necessary with a better suited access control mechanism.

As an additional benefit of a role-based system, the access control maintenance responsibilities can
he divided among the central and local applications. The central application could define the rules

Some stftt.es allow patients access to their own record to check for inaccuracies.
11 As previously mentioned, titles and duties vary so this mechanism must be flexible. One person may fit into varioii!

ategoi'ies.

15

(e.g. the access rights of primary physicians) while leaving the role definitions (e.g. which individual
is actually tagged as the primary physician) to the individual medical centers. This frees the central
system of some details and leaves some flexibility to the local health care center (eg. to define an
emergency mode). This simplifies access control management but forces more trust to be placed on the
local health care system.

It would be useful to have a two-party permission system for some situations. This might help prevent
mismanagement or fraud such as prescribing tests which are either unnecessary, questionable or not
given. It would also allow tighter control over certain critical operations such as modifying secret keys
and access rights.

A delegation mechanism for one person to temporarily or permanently sign over control to another
would be useful. This would allow primary physicians who go on vacation, for example, to sign over
primary physician's responsibility to another. However, a delegation mechanism is not as essential with
mechanisms in place that allow protected and monitored emergency access.

There should be a mechanism for allowing patients to give "permission" for others to access their files
for longer than a single login session. For example, if a smart card is required for access, it would be
very inconvenient to require that the patient either leave the card or come back in two days when the
blood test results are back from the lab and ready to be entered into the patient's record. This extended
permission should, however, expire after a set amount of time.

Labels indicating the sensitivity of information may useful in this type of application but are not essen-
tial. Health care professionals have been trusted in the past to know what information is confidential
and it is usually obvious who has a need-to-know with medical information. However, labels could serve
as a reminder.

Unmodifyable labels identifying the origin of information might be somewhat useful but certainly not
essential. It would not be useful in determining a security leak when the information is simple enough
to forward without copying, such as identification of an AIDs victim. However, it would be useful in
some instances such as when an insurance company is caught storing information that was illegally
gathered.

Communication Over Networks

A medical information system, especially a centralized database system such as the one purposed by the
government, has some very important communication requirements. A medical application must be able
to assume that there is a secure network messaging mechanism to maintain confidentiality and integrity
during transmission especially over unsecured lines. Whether the encryption should be end-to-end or
link would depend on the structure of the network. End-to-end would prevent the end links from having
to trust intermediate nodes. If the system is set. up to provide access based on patients (as when using
patient smart cards) and there is one centralized system such as the government has proposed, end-
to-end encryption would make sense. Link encryption would necessitate a more complicated auditing
mechanism and would require trusting the intermediate links.

Two-way trust is essential in a medical system. The receiver must be able to trust the integrity
and authenticity of the sender and vice versa. A large portion of the communications will require
confidentiality so a fast encryption mechanism is important. There should also be a mechanism for
preventing replays and misroutings.

16

Summary

Medical information systems are just one example of a commercial application with interesting and
challenging security problems. Some of the most important application level security concerns of this
type of system are still open research topics. Others are technologically feasible but have not been
implemented. Still others have been implemented but not yet integrated into large systems or are not
commercially available and supported. There is much work to be done at all levels 12.

The most important security requirements of medical information systems at the application level are:
integrity checks, secure and intelligently coordinated auditing, emergency access, secure identification,
automatic logout, electronic signatures, secure communications, and role-based access controls. Secure
and intelligently coordinated auditing, emergency access, and role-based access control mechanisms
require extensive research before medical applications using them can be effectively implemented. These
areas seem to receive less attention because they are not as important in DOD type applications.

References

[1] Barclay, M.L., B.L. Shipman, and S.F. Grefsheim Implementation and Use of a University-based
Wide Area Network for Access to the Medline Database, Annual Symposium on Computer Appli-
cations in Medical Care, November 1990, p. 380.

[2] Brannigan, V. and B. Beier, Standards for Privacy in Medical Information Systems: A Technio-
Legal Revolution, Annual Symposium on Computer Applications in Medical Care, November 1990,
p. 260.

[3] The Computer-Based Patient Record: An Essential Technology for Health Care, Institute of
Medicine, Washington. D.C. 1991.

['1] Hamilton, D.. Identification and Evaluation of the Security Requirements for Medical Applications,
Proceedings of IEEE Computer-Based Medical Systems Symposium, June 1992, p. 129.

[5] Lincoln, T. and Daniel Essin. M.D., The Computer-Based Patient Record: Issues of Organization.
Security and Confidentiality, IFIP: Database Security Workshop IV, November, 1991.

[0] National Institute Of Standards And Technology, Gaithersburg, Ml)., Minimum Security Func-
tionality li< quiri mi nls For Multi-User Operating Systems, Draft, - Issue 1, January 27, 1992.

[7] Ftihitzky, R. etal., list of a Text Retrieval System to Automate Discharge Summaries and Operative
Reports, Annual Symposium on Computer Applications in Medical Care, November 1990, p. ^70.

[8] Satire DBMS Auditor: Final Technical Report and Functional Specification, Trusted Information
Systems, Inc.. Contract Number F3()002-87-d 1)0093, December 28, 1989.

[9] Tcich, .I.M. ot al., Design Considerations in the BWH Ambulatory Medical Record: Features for
Maximum Acceptance by Clinicians, Annual Symposium on Computer Applications in Medical
Care, November 1990. p.735.

[10] Tang, P. el. al., Physician Workstations: Integrated Information Management for Clinicians, An-
nual Symposium on Computer Applications in Medical Care, November 1901.

[II] Ting, T.C Application Information Security Semantics: A Case of Mental Uiallh Delivery, IFIP
Database Security Conference, 1989.

Refer In [I] for a brief comparison ->f current technology with these security requirements.

17

AN APPROACH FOR MULTILEVEL SECURITY (MLS)
ACQUISITION

Bill Neugent
The MITRE Corporation

7525 Colshire Dr.
McLean, VA 22102, U.S.A.

703-883-6632

1. Introduction*

Lack of Multilevel Security (MLS) within United States (US) Department of Defense
(DOD) computer systems is recognized as a significant shortcoming, because it limits
interoperability and data fusion. To help address this problem, the Joint MLS Technology
Insertion Program was officially established in January 1990. The program is managed by
the Defense Information Systems Agency (DISA) and the security coordinator is the
National Security Agency (NSA). The purpose of the program is to expedite the fielding of
MLS operational capabilities within DOD. This paper is derived from guidance produced
by the program [1].

This paper presents an approach for an MLS acquisition process for use over the next few
years. This process is needed because of the great uncertainty and development risk
currently associated with the development and acquisition of MLS capabilities. This
uncertainty and development risk necessitate a flexible development and acquisition process
and especially necessitate a process with less burdensome documentation than required in
the current DOD software development standard [2]. This process is not intended for use
by all sites — only those with sufficient expertise and resources to deal with the
complexities and difficulties currently associated with MLS. This process is intended as
interim guidance, to be replaced within a few years by official DOD security acquisition
guidance.

This is an idealized process rather than one to be inflexibly and uniformly applied to all
sites. Furthermore, the process must be interpreted to best suit the particular people and
organizations involved. The value of this generic MLS development and acquisition
process is that it is a target that will improve development and acquisition effectiveness to
the extent that it can be followed.

2. Activities

Figure 1 summarizes the phases involved in defining and fielding MLS capabilities. The
three phases are (1) formulate and coordinate the approach, (2) acquire and integrate the
capabilities, and (3) operate the system with the new capabilities. The following
paragraphs examine the three phases in more detail.

* This paper is based on work performed under Contract DAAB07-91-C-N751 for the
Defense Information Systems Agency (DISA).

18

Formulation
and

Coordination

Formulate
Overall

Approach

Capability
A

Capability
C

Acquisition
and

Integration

Acquire and
Integrate

Operation

Acquire and
Integrate

Review and
Revise

Acquire and
Integrate

Operate

Review and
Revise

I
Review and

Revise

Figure 1. MLS Development and Acquisition Process

The formulation and coordination phase initiates activities and requires official approval.
The approach that is formulated and coordinated in this phase incorporates all planned
capabilities. Subsequently, during acquisition and integration, logically distinct capabilities
are separately acquired and integrated. Separate acquisition approaches and schedules can
be used for each capability, with each capability being independently integrated into the
operational system(s) and the revised system certified and (rc)accredited. Each capability
then is placed into operation. To complete the process, the capability, the overall
architecture, and the overall acquisition approaches are reviewed, with revisions
incorporated into future iterations of the process.

19

This generic MLS development and acquisition process is partly based on ideas drawn
from the Spiral development model, although the process as a whole is quite different from
the Spiral model [3]. Taken from the Spiral model are (1) an emphasis on management of
development risks, (2) use of prototypes, and (3) a streamlining of process, review, and
documentation (in comparison with the DOD software development standard [2]).

2.1 Formulate and Coordinate Approach

The first phase of activity is to formulate and coordinate the overall approach. Five steps
are involved in this phase:

o Select functional MLS capabilities

o Develop concept of operations briefing

o Obtain approval for approach

o Develop security architecture

o Develop acquisition and integration plan

While these steps call for several documents, the documentation must not be detailed or
voluminous, since these characteristics would lead to inflexibility. Rather, the intent is that
the documentation be sufficient to ensure adequate analysis is done to guide and plan the
effort. Vugraph presentations should provide sufficient detail for the first four steps.

2.1.1 Select Functional MLS Capabilities

The first step in formulating and coordinating the approach is to select the functional MLS
capabilities to be provided. This entails (1) assessing the availability of relevant,
acceptably-mature trusted products, (2) identifying the major security threats and resultant
risks, (3) defining the most critical operational needs, (4) identifying and complying with
relevant security policies, and (5) reviewing available DOD architectural guidance.

While a general understanding of user requirements is assumed to exist, note that a detailed
description of user requirements is not prepared in this or subsequent steps. The purpose
of this generic process is not to identify and develop what users ideally would like to have,
but to find, integrate, and adapt commercial trusted products that acceptably satisfy user
needs. The emphasis thus is on commercially-available approaches and their acceptability
rather than on refinement of requirements. It still is necessary to consider the concept of
operations in selecting functional MLS capabilities, in order to ensure that the MLS solution
addresses a legitimate need.

Due to the development risks currently involved with MLS, sites developing or acquiring
MLS capabilities should adhere to the following criteria:

o Carefully scope and bound efforts so that risks are manageable; do not
attempt to address too complex or too many MLS problems or products at
the same time.

o Use products that comply with DOD standards for security, interoperability,
or commonality.

20

o Ensure that the approach is technically sound and noncontroversial and is
not based on narrow assumptions about use or environment,

o Ensure that product configuration management and maintenance are not
undermined by adaptations or modifications.

o Use sufficiently mature products to avoid wasting resources by assisting
vendors in product debugging.

Once an initial approach is selected, an analysis is needed to ensure that equivalent
operational capabilities cannot be provided through an approach involving less development
risk. This analysis should examine required data flow and investigate the feasibility of
alternate approaches, such as changing system operating levels or using a simple security
guard.

2.1.2 Develop Concept of Operations Briefing

The second step is to develop a concept of operations briefing for the entire system, but
with emphasis on MLS. The concept of operations should identify (1) specific data (and
sensitivity levels) to be processed, (2) user capabilities (and clearances), (3) the system
management approach, (4) the maintenance approach, and (S) the approach for
evolutionary integration of new MLS capabilities with existing and planned operational
systems. The concept of operations also should estimate short and long term costs,
including any savings.

The concept of operations must explicitly address the man-machine interface, with
emphasis on procedures that might be seen by users or system managers as being complex
or cumbersome. It must also address functional limitations, such as a loss of particular
capabilities or an inability to support particular types of commercial software. To
counterbalance any such losses, the concept of operations also must explain MLS benefits,
such as improved information access, improved data fusion, improved interoperability,
reduced need for high clearances, and reduced amounts of hard copy output (to downgrade
and handle).

One purpose of the concept of operations is to ensure that planners do not implement MLS
for its own sake, but that they think through the implications of adding MLS - both
positive and negative. This helps ensure that the approach makes sense both technically
and operationally. As part of the concept of operations briefing, a vugraph or two on the
overall security architecture is needed for technical context

2.1.3 Obtain Approval for Approach

The third step is to obtain approval for the approach. This involves coordinating the
approach with local personnel, to ensure that benefits of the approach justify the acquisition
and operational costs in the eyes of all involved people. Local personnel who should be
involved include data owners, data users, accreditation authorities, system managers,
security managers, system planners, local vendors, and local Independent Validation and
Verification (IV&V) personnel. Necessary approvals must be obtained. This coordination
can be time consuming and complex, but it is critical to the operational success of the
capabilities produced by the process.

21

2.1.4 Develop Security Architecture

Once the approach has been approved, it must be expanded into a high-level security
architecture that describes the approach in more detail. The architecture must identify
involved system components and security functions and must identify the role each
component serves in performing the security functions. Included in the architecture is the
security policy for the system, which describes specific classifications, categories, and
handling restrictions; identifies discretionary access control rules; and so forth. The
security architecture, just as the concept of operations, must span all capabilities, even
though a separate acquisition and integration effort is used for each capability. The reasons
for this are to reduce the amount of official review and approval needed and to ensure
integration across capabilities. The security architecture also must address the MLS
capabilities in the context of the operational system(s) within which they are to be fielded.

2.1.5 Develop Acquisition and Integration Plan

The next step is to develop a plan for acquisition, integration, certification, and
accreditation. The plan must clearly identify roles and responsibilities. This requires
working with product vendors, program personnel, IV&V personnel, and other relevant
organizations (e.g., procuring agencies for particular products) to identify needed
hardware, software, integration, analysis, certification, accreditation authorities, and
documentation.

Particular attention is placed on development risks, which are explicitly identified and
prioritized in the plan and monitored during the effort. Development risks are critical areas
warranting added resources or attention. Main potential development risk areas for MLS
include integration, management, use, certification, and accreditation. Each of these
potential development risk areas must be closely examined. For example, integration risks
are examined by analyzing protocol, data format, security labeling, and interface
standardization and compatibility and identifying any needed capabilities that are not
available. This understanding of development risks is needed not only to identify where to
focus attention, but also to plan the specific acquisition approach. For example, if a main
risk area is the lack of well-defined user requirements, then the acquisition approach must
ensure that integrators and developers work closely with users.

As part of the plan, the approach for product selection must be identified. Also to be
identified is the detailed process for both technical and programmatic oversight, including
assignment of official design authority and provision of means for team leaders to
coordinate and resolve issues across product, application, and technical boundaries. The
plan must summarize the process for moving capabilities from the prototype environment
into the operational environment and must explicitly identify activities that are outside the
scope of the prototype environment but are necessary for ensuring security in the
operational system (e.g., planning for physical security, virus protection). The plan must
identify the approach and resources (e.g., responsible organizations) for certification and
accreditation. Finally, a determination must be made that adequate funds are available (or
obtainable) to implement the plan.

22

2.2 Acquire and Integrate Capabilities

The second phase of activity is acquisition and integration. As shown in figure 1, separate
acquisition and integration efforts are used for logically distinct capabilities, with each
effort uniquely tailored to each capability. While some capabilities might take a year or two
to develop, it is desirable that at least one capability be fielded within six months, so that
immediate benefits can be seen. There are six steps in acquiring and integrating the MLS
capabilities:

o Acquire products

o Develop and integrate the capabilities

o Develop capability baseline

o Perform functional testing

o Perform certification

o Support accreditation

2.2.1 Acquire Products

The first step is to acquire the products. This involves assessing and selecting the specific
products to be used and then acquiring the hardware and software. Care is needed to
ensure adequate competition among qualified vendors and to ensure that security issues are
adequately addressed in the acquisition package. Guidance is provided by Abrams, et al.
[4] and by Caddick [5].

2.2.2 Develop and Integrate the Capabilities

The major step in this phase is to perform development and integration. Within this step
are the most pronounced differences between the multiple acquisition efforts. Several
different development approaches are illustrated in figure 2. The distinguishing factor of
each approach is the type of prototype implemented. The determining factor in deciding
which approach to follow is the nature of the development risks involved. All approaches
begin with refinement of the concept of operations and security architecture.

Where the main development risk areas are the user requirements and user interface, a
demonstration prototype is needed. A demonstration prototype allows users to
experience the look and feel of screens, menus, and reports. Based on this experience,
requirements are redefined, new requirements generated, and possibly a revised
demonstration prototype developed. If the main development risk area is the security
management interface, a demonstration prototype still is applicable.

Where the main development risk area is technical integration, a design assessment
prototype is needed. A design assessment prototype allows designers to examine
technical integration issues such as protocol interoperation and commercial software
compatibility, as well as issues such as platform performance, optimization techniques, and
portability to target systems.

23

Major risk: user
requirements and interface

Major risk:
technical integration Major risk: none

Refined
CONOPS and

Security
Architecture

I
Refined

CONOPS and
Security

Architecture

Demonstration
Prototype

T

V Approval y

Refined
CONOPS and

Security
Architecture

Operational
Capability

No

/ N, Yes

-^-^Accreditation ^-^*
\. y'Operation

Figure 2. Development Approaches

Where there are no overriding development risk areas or where other prototypes already
have been used to mitigate risks, an operational capability is developed. On
completion of the operational capability, it is integrated into the operational system(s),
testing and certification are completed, and accreditation is performed. New releases of the
operational capability occur as needed.

24

Whatever approach is chosen, staff personnel must be trained in the approach and related
technologies. To the extent feasible, prototypes should result in immediate operational
benefits, in that some subset of the prototype should be suitable for near-term fielding.

2.2.3 Develop Capability Baseline

In parallel with the preceding step, a capability baseline should be prepared that serves as
the official functional baseline for each capability. If the capability is based primarily on
commercially-available elements, preparation of the capability baseline will involve
assembling the refined concept of operations and security architecture, along with the
available product documentation, and drafting any other documentation needed to reflect an
integrated view of the involved products or components and the system into which they are
to be incorporated. If substantial software development is involved, a capability baseline
must be prepared to describe the new capabilities. Minimum contents for the baseline
include functional capabilities, internal interfaces (e.g., data, other products, support and
management software), and performance goals. If the baselined document is affected by
user-required changes, the changes should be tracked and the document updated after
software delivery. Demonstration prototypes can be a particularly important source of
insight for the capability baseline.

2.2.4 Perform Functional Testing

The next step is functional acceptance testing. Where feasible, functional testing is done in
the prototype environment, so as not to interfere with the operational system. Final
functional testing typically is done after the capability has been integrated into the
operational system(s). Functional acceptance testing should be based upon test scenarios in
the capability baseline, as adapted for the specific site involved.

2.2.5 Perform Certification

Certification is the technical assessment of whether a system meets its security
requirements [6]. Certification is performed in parallel with development and integration
and is not restricted to testing at the end of the effort [7]. For example, early certification
review is needed to prevent planners from pursuing approaches that have substantial
security shortcomings.

At a minimum, all security-relevant documentation must be reviewed by certifiers and
independent testing must be performed, including penetration testing. That is, if functional
testing is performed by the developer, key portions must be repeated by the government
(e.g., perhaps through an IV&V organization). Penetration testing must be performed by a
different group from the one performing functional testing (preferably by a different
organization) and must not be required to repeat the systematic, thorough examination of
capabilities that is performed by functional testing. Penetration testing instead must be free
to concentrate on arcane attacks and on areas of potential vulnerability. Data integrity and
denial of service attacks are within the scope of penetration testing. Note that substantial
testing is warranted due to the inherent security risks of fielding MLS capabilities and using
new trusted products. Use of products rated or endorsed by NSA is expected to reduce,
but not eliminate, the need for certification review.

25

The most critical aspect of security certification is the use of qualified specialists to perform
the work. Each security product involved must be examined by an objective expert who is
qualified to assess the product's security effectiveness within the particular capability. For
example, if NSA-evaluated products are used, a representative from the product evaluation
team could participate in the certification. Without such specialized expertise, certification
reports have a high likelihood of containing incorrect or misleading information.

Minimal required documentation includes certification findings and security operating
procedures. The latter are needed so that security managers know what organization-
specific rules to follow in initializing and using security permissions and audit capabilities.

2.2.6 Support Accreditation

The last step of acquisition and integration is to support accreditation or reaccreditation of
the system into which the new capabilities have been incorporated. Accreditation is the
management decision to operate the system [6]. Accreditation is based on certification
findings. For initial capabilities there might be limited functionality or security restrictions
that must be endured until later versions are available.

2.3 Operate System With New Capabilities

Capabilities finally are used in the operational system. Transition planning to integrate the
new capabilities into an existing system is complex and must address training, procedures,
data, hardware, and software. New procedures and roles might be needed. Data might
have to be partitioned (e.g., into databases operating at different security classification
levels). Old and new configurations might be operational simultaneously, with new MLS
capabilities implemented for only a subset of the users. Care is needed that the insertion of
MLS capabilities not disrupt operation.

MLS capabilities initially being fielded in operational systems should be carefully evaluated
during the initial period of operation to assess the security, performance, and impact of the
capabilities. Such scrutiny is needed because unforseen difficulties can arise when users,
administrators, and security officers begin using a new capability to support an operational
application. Another reason for careful oversight of the initial operational period is that
current MLS capabilities, due primarily to limitations in product completeness and maturity,
do not have the assurance of mature commercial products or of capabilities developed in
accordance with a detailed, step-by-step development process. Subsequent releases of the
MLS capability should improve its assurance, along with its functionality and performance.

Feedback is needed from initial MLS capabilities that have been fielded in operational
systems. This feedback could be provided in the form of operational MLS experience
reports, prepared about one year after initial fielding (or as needed). While there normally
is no official requirement for such reports, the Joint MLS Technology Insertion Program
encourages their preparation. The purpose of such reports is to record the view of real
users rather than technologists or program planners. Whereas people who plan for or
develop a capability might be inclined to put the best face on their efforts, people who use a
capability should be better able to provide an objective assessment

26

References

[1] DISA, September 1991, Target Architecture and Implementation Strategy for the Joint
MLS Technology Insertion Program, Arlington, VA.

[2] DOD, 29 February 1988, Military Standard Defense System Software Development,
DOD-STD-2167A, Washington, DC.

[3] Boehm, B. W., August 1986, "A Spiral Model of Software Development and
Enhancement," reprinted in Software Engineering Notes, Vol. 11, No. 4, Association for
Computing Machinery (ACM).

[4] Abrams, M., D. Akers, K. Bitting, A. Lee, J. Lovelace, and B. McKenney,
September 1990, Overview of Security in the Acquisition Process, MTR-90W00138,
The MITRE Corporation, McLean, VA.

[5] Caddick, E. M., April 1990, Security-Relevant Documents Developed During System
Acquisitions, MTR10869, The MITRE Corporation, Bedford, MA.

[6] National Computer Security Center (NCSC), 21 October 1988, GLOSSARY of Computer
Security Terms, NCSC-TG-004,Version-l, Ft. Meade, MD.

[7] NIST, 27 September 1983, Guideline for Computer Security Certification and
Accreditation, FIPS PUB 102, Gaithersburg, MD.

27

ARCHITECTURAL IMPLICATIONS OF COVERT CHANNELS

Norman E. Proctor and Peter G. Neumann
Computer Science Lab, SRI International, Menlo Park CA 94025

Abstract This paper1 presents an analysis of covert
channels that challenges several popular assumptions
and suggests fundamental changes in multilevel ar-
chitectures. Many applications could benefit from a
practical multilevel implementation but should not
tolerate any compromise of multilevel security, not
even through covert channels of low bandwidth. With
the present state of the art, the applications either
risk compromise or forgo the benefits of multilevel sys-
tems because multilevel systems without covert chan-
nels are grossly impractical. We believe that the pres-
ence of covert channels should no longer be taken for
granted in multilevel systems.

Many covert channels are inherent in the strate-
gies that multilevel systems use to allocate resources
among their various levels. Alternative strategies
would produce some sacrifice of efficiency but no in-
herent covert channels. Even these strategies are in-
sufficient for general-purpose processor designs that
are both practical and multilevel secure.

The implications for multilevel system architec-
tures are far-reaching. Systems with multilevel pro-
cessors seem to be inherently either impractical or un-
secure. Research and development efforts directed to-
ward developing multilevel processors for use in build-
ing multilevel systems should be redirected toward
developing multilevel disk drives and multilevel net-
work interface units for use with use only single-level
processors in building multilevel distributed operat-
ing systems and multilevel distributed database man-
agement systems. We find that distributed systems
are much easier to make both practical and secure
than are nondistributed systems. The appropriate
distributed architectures are, however, radically dif-
ferent from those of current prototype developments.

Keywords covert channels, distributed systems,
multilevel security, system architecture.

'Copyright 1992, Norman E. Proctor and Peter G. Neu-
mann. Presented at the 15th National Computer Security Con-
ference, Baltimore, 13-16 October 1992, this paper is based on
work performed under Contract F30602-90-C-0038 from the
U.S. Air Force Rome Laboratory, Computer Systems Branch,
Griffiss Air Force Base, NY 13441 [10].

Introduction
This introduction describes covert channels and

their exploitation. The next section gives some back-
ground on covert channel research and relevant stan-
dards. After that, we identify the circumstances in
which covert channels need not be avoided when de-
signing a system for an installation. First, we consider
various reasons why covert channels might be tolera-
ble in a multilevel system. Then, since covert chan-
nels are found only in multilevel systems, we consider
when alternatives to multilevel systems are appropri-
ate for an installation. This seems to leave a large
class of installations that would want multilevel sys-
tems free of covert channels.

We next turn our attention to various reasons why
multilevel systems have covert channels and consider
how the needs of applications can be met without
producing covert channels. We consider in particular
how a multilevel system can allocate resources among
levels without covert channels that compromise secu-
rity and without inefficiencies that leave the system
impractical. We describe the problems with dynamic
allocation and identify three alternative strategies for
secure and practical resource allocation: static allo-
cation, delayed allocation, and manual allocation.

We describe some practical approaches to multi-
level allocation for various devices, including multi-
level disk drives, and explain why allocating software
resources among levels is so troublesome. Finally, we
present the implications for multilevel system archi-
tectures and suggest new directions for research and
development.

To the Reader Earlier versions of this paper were
misinterpreted by some very knowledgeable read-
ers, leading us to clarify the exposition. Neverthe-
less, we warn readers familiar with the problems of
covert channels in multilevel systems that, because
we are questioning some popular assumptions about
covert channels, what you already know about covert
channels may cause you to misunderstand our main
points. Thus, please forgive our belaboring certain
central issues and slighting other fascinating topics
that seemed less central to the discussion.

28

Covert Channels Covert channels are flaws in the
multilevel security of a system.2 The channels are
found only in multilevel systems. A malicious user
can exploit a covert channel to receive data that is
classified beyond the user's clearance. Although a
covert channel is a communication channel, it is gen-
erally not intended to be one and may require some
sophistication to exploit. It may take considerable
processing to send one bit of data through the chan-
nel; error control coding is needed to signal reliably
through a noisy covert channel. Exploitation may re-
quire the help of two Trojan horses. One runs at a
high level and feeds high data into the channel, and
the other Trojan horse runs at a lower level and re-
constructs the high data for the malicious user from
the signals received through the covert channel. The
low Trojan horse is not needed if the high one can
send a straightforward signal that can be directly in-
terpreted. Also, as we explain later, malicious users
can exploit some special kinds of covert channels di-
rectly without using any Trojan horses at all.

A covert channel is typically a side effect of the
proper functioning of software in the trusted com-
puting base (TCB) of a multilevel system. Trojan
horses are untrusted programs that malicious users
have written or otherwise introduced into the system.
A Trojan horse introduced at a low level can usually
execute at any higher levels.3

A malicious user with a high clearance does not
need to use covert channels to compromise high data.
The mandatory access controls would permit reading
the high data directly. Ordinary reading is certainly
an easier way to receive the data if the discretionary
access controls permit ordinary reading. If not, it is
easier for a Trojan horse to copy the data into another
place where the discretionary controls do permit the
malicious user to read it than to exploit a covert chan-
nel to transmit the data.

The levels that concern us here are not necessarily
hierarchical confidentiality levels. They may instead
be partially ordered combinations of hierarchical lev-
els with sets of compartments. We assume that a
level might have some compartments. This means
that two different levels may be comparable or in-
comparable. If comparable, one level is higher and
the other is lower. If incomparable, neither level is
higher or lower. A higher level denotes greater in-

tended secrecy or confidentiality.4

Noise in Covert Channels The bandwidth of a
covert channel is the rate at which information or
data passes through it. A noisy channel intentionally
or accidentally corrupts the data signal with errors so
that the information rate is slower than the data rate.
A very noisy channel with an apparent bandwidth of
one bit of data per second might actually leak only
one millionth of a bit of usable information per sec-
ond. Such a low bandwidth is beneath the notice of
some. A malicious user who might have received the
classified answer to a yes-or-no question almost im-
mediately if the channel had no noise would expect
to wait almost twelve days for the answer. Of course,
the channel still compromises security even though
extremely high noise makes for an extremely low ef-
fective bandwidth.

Noise in a covert channel may also make its infor-
mation probabilistic. For example, consider a slower
covert channel with a bandwidth of a thousandth of
a data bit per second where each bit received has a
seventy-five percent chance of being the same as what
was sent and a twenty-five percent chance of being
wrong. A malicious user exploiting the channel must
receive the answer to a yes-or-no question many times
before believing whichever answer was received more
often. The expected wait for each answer is about
seventeen minutes, but it takes around five hours for
confidence in the answer to reach ninety-nine percent.
Here again, compromise of security is postponed but
not prevented.

Background
Various approaches exist for detecting and ana-

lyzing covert storage channels [2, 12] and for avoiding
some of them [5]. For covert timing channels, ad-
ditional approaches exist for detection, analysis, and
avoidance [4, 14]. Some approaches attempt to ad-
dress both types of covert channels [3]. The notions of
restrictiveness and composability [8] seek to preserve
the absence of covert channels under composition, as-
suming their absence in the underlying components.

At the end of this paper, we discuss some new
directions for multilevel system designs that avoid all

'Similar flaws in other aspects of security are sometimes
called covert channels, too, but a covert channel in this paper
is always a communication channel in violation of the intended
multilevel policy of the system.

3If a program could run only at the level where it was in-
stalled, it would be harder for a malicious user with a low
clearance to introduce the high-level Trojan horse. It would
also be inconvenient to install legitimate software.

4For simplicity, we assume that levels are for confidentiality
although they could instead be for integrity or for both in-
tegrity and confidentiality. The levels for mandatory integrity
are duals of confidentiality levels; covert channels can compro-
mise mandatory integrity in a direct parallel to their compro-
mise of mandatory confidentiality. For example, a Trojan horse
running at a low integrity level might covertly contaminate
high integrity data where overt contamination was prevented
by multilevel integrity.

29

covert channels. The architectures themselves are not
new, of course. Others have considered similar archi-
tectures for somewhat different reasons [11, 13].

Much of the research and development in covert
channels for practical systems has been devoted to
reducing bandwidths to what some consider to be
slow rates. Sometimes delays are introduced to lower
bandwidth, and sometimes noise is added to lower
the usable bandwidth. These approaches merely en-
sure that malicious users exploiting the channels do
not enjoy the same quick response times to their
queries as legitimate users enjoy. The assumption
may be that if it takes hours or days for an answer
to a simple illicit question, malicious users will ignore
the covert channel and prefer more traditional meth-
ods of compromise, such as blackmailing or bribing
cleared users. Although we do recognize some situa-
tions where covert channels are tolerable, we believe
the reason is rarely because of low bandwidths. For
most installations, we believe that all covert chan-
nels should be completely avoided, not simply made
small. A clever, malicious user can generally compro-
mise classified information with even the narrowest
covert channel.

Other research in covert channels for practical sys-
tems has addressed the elimination of some specific
varieties of channels. The other varieties, typically
including all timing channels, are permitted in a mul-
tilevel system because the developers couid not find a
way to eliminate them without rendering the system
impractical for its legitimate functions. The assump-
tion may be that any channel that is too hard for a
developer to eliminate must also be too hard for a
malicious user to exploit, but this assumption is so
clearly fallacious that it is never explicit.

A cynical interpretation of this willingness to tol-
erate residual channels is that, because many users
have simply accepted systems with covert channels
despite the potential for security violations, develop-
ers treat a multilevel security policy as an ideal to
approach, not as a requirement to meet. A more gen-
erous interpretation is that the developers intend to
eliminate more and more kinds of covert channels with
each new generation of multilevel designs hoping that
someday they can actually design a system with no
covert channels. We wish they would go straight for
systems free of covert channels, and we believe the
goal can be reached.

Standards The U.S. Defense Department stan-
dards in the Trusted Computer System Evaluation
Criteria [9], also known as the Orange Book, place
restrictions on covert channels in secure systems. Sys-
tems evaluated at classes Cl and C2 would have no

covert channels simply because they would always be
run at a single level. There are no restrictions on
covert channels in a class Bl system, even though the
system would probably have plenty of them.

For a class B2 system, an attempt must be made
to identify the covert storage channels, measure their
bandwidths, and identify events associated with ex-
ploitation of the channels. The design must avoid all
storage channels with bandwidths over one bit per
second, and the audit must be able to record the ex-
ploitation events for any storage channels with band-
widths over one tenth of a bit per second. There are
no restrictions on covert timing channels. In a class
B3 system, the criteria for covert channels are ex-
tended to the timing channels.

In a class Al system, the attempt to identify
covert channels must use formal methods, but the
criteria are otherwise the same as for class B3. The
requirement of formal methods does imply that the
informal methods acceptable for classes B2 and B3
may miss some covert channels. Among the channels
that formal methods themselves tend to miss are the
timing channels.

The criteria for covert channels in other security
standards are similar to the Orange Book criteria. Al-
though no standards require avoiding all covert chan-
nels, considerable theoretical work has been done on
hypothetical systems free of covert channels. This is
in part because absolute multilevel security would be
better than multilevel security with potential com-
promise through covert channels. Another reason is
surely that absolute security is far easier to express in
a mathematical model than is compromised security.

We feel that the tolerance of covert channels in
security standards is unnecessary and therefore in-
appropriate for most multilevel systems. In fairness,
when the Orange Book was written, covert channels
were believed to be inevitable. This belief remains
widespread today. We do not accept the inevitability
of covert channels in practical multilevel systems, and
we fear that the current tolerance of covert channels
is itself a major threat to classified information. The
Orange Book and other standards are meant to pro-
mote the development of secure systems. The stan-
dards should not be used as excuses for developing
systems with unnecessary flaws.

Tolerating Covert Channels

A malicious user who is cleared for certain clas-
sified data can always compromise the secrecy of the
data. The problem with covert channels is that a
malicious user with the help of one or more Trojan

30

horse programs can exploit a covert channel to com-
promise data classified beyond the user's clearance.
Installations without malicious users or without Tro-
jan horses can tolerate whatever covert channels a
multilevel system might have because the channels
would not be exploited.

No Malicious Users Of course, at any installation
with more than one user, one can never be certain
that no users are malicious, but a system-high instal-
lation might reasonably ignore its covert channels as if
there were none. Since running system-high requires
that all users be cleared for every level, the security
officers of the installation would not expect users to
exploit covert channels. To compromise any data in
the system, a malicious user does not need a covert
channel. Covert channels are tolerable in system-high
installations because they do not increase the system
vulnerability.

No Trojan Horses The security officers of some
installations will assume that they have no Trojan
horses. They may be right only because conven-
tional compromise remains easier than exploiting Tro-
jan horses when malicious users have limited technical
skills. Few malicious hackers have access to multilevel
systems, and few multilevel systems are exposed to
malicious hackers. But security officers cannot know
whether their installations are among the unfortunate
systems.

An installation cannot reasonably be assumed free
of Trojan horses unless appropriately trained people
rigorously check all the programs that run on the sys-
tem to be sure that none harbor Trojan horses. All
new applications and all changes to existing appli-
cations must be reviewed. Rigorous reviews are so
expensive and time-consuming that the software on
the system must be fairly stable. Also, the system
must not have any compilers, command interpreters,
or similar programs able to create code and bypass
the review procedures. Because no Trojan horses are
available to exploit them, most covert channels are
tolerable in an installation that can afford to ensure
that all software is trusted not to contain a Trojan
horse. Such a multilevel installation, if any exists,
is probably dedicated to one modest-size application
program running on a bare processor.

Malicious users can exploit some special covert
channels to compromise certain kinds of classified
data without employing Trojan horses. Typically, the
data might indicate how busy the system currently is
at various levels. If the data were only nominally clas-
sified, its leakage would not be serious, but release
of such data at lower levels could constitute a real

compromise of some systems. These special covert
channels are, of course, intolerable even when an in-
stallation is known to be free of Trojan horses.

Low Bandwidth It may also be the case that leaks
through covert channels are tolerable at some instal-
lations, provided the leaks are slow enough. The Or-
ange Book suggests that covert channels with band-
widths under one bit per second axe "acceptable in
most application environments." This acceptability
may simply be a concession to the sorry state of the
art where some covert channels are sure to be present
in any multilevel system and where merely identifying
all the covert channels is generally infeasible.

It is difficult to believe that many security officers
worry about how quickly data is compromised instead
of worrying about whether it is compromised. Surely
most worry about both problems. Nevertheless, a suf-
ficiently low bandwidth could reasonably make covert
channels tolerable at installations with special situa-
tions. Where all classified data is tactical data with
ephemeral classifications, slow covert channels are tol-
erable if data would no longer be classified by the time
it had been released. If leaking the answer to one cru-
cial yes-or-no question is enough to compromise the
system, either the classification of that answer must
last only a split second or all covert channels must
have extremely low bandwidth.

Similarly, at installations where a price tag can
be placed on all classified data, some covert chan-
nels are tolerable because no Trojan horses to exploit
the channels would be cost-effective or because any
alternative without covert channels would be too ex-
pensive. If covert channel bandwidths are important
in performing the cost-benefit analysis, some covert
channels may be tolerable because of their low band-
widths. Where data is classified to protect national
security, assigning prices is foolish and perhaps illegal.

Lack of Alternatives Many installations tolerate
covert channels simply because every multilevel sys-
tem under consideration has some and because those
in charge feel they need multilevel systems. Fortu-
nately, these difficulties can be overcome. We believe
that there can be multilevel systems without covert
channels and that there are often suitable alternatives
to multilevel systems. The accreditors of automated
systems for multilevel applications should not have to
tolerate covert channels.

Alternatives to Multilevel Systems

Not all applications have to run on multilevel sys-
tems. We mention first two unattractive options that

31

must sometimes be taken. One is not to implement
the application at all, and the other is to implement
it with manual procedures only. The remaining al-
ternatives are all automated implementations. The
potential benefits of automation include convenience,
accuracy, speed, and lower costs. These benefits have
permitted the implementation of many applications
that were infeasible before the advent of computers.

When an application involves only one level of
data or when all users are cleared for every level of
data, the best alternatives are a single-level system
or a system-high system, respectively. But the appli-
cations that interest us here have some data classi-
fied at levels beyond the clearances of some users of
the automated system. A single-level or system-high
system cannot accommodate these applications, but
a multilevel system is not the only alternative left.
Another possibility is a system with an independent
subsystem per level (ISPL). ISPL systems tend to be
inefficient, but at least they are intrinsically free of
covert channels. We present the ISPL architecture
mostly because it is useful later for comparisons with
more attractive alternatives.

In an ISPL system, there is a separate subsystem
for any level where the system as a whole could have
some data. Data is stored on the subsystem for the
level matching the classification of the data. Addi-
tional upgraded copies of the data might be stored on
some other subsystems at higher levels. A user has
access to a subsystem only if its level is dominated by
the user's clearance.

The subsystems are electronically independent.
Each subsystem has its own hardware, and the hard-
ware for the subsystem at one level is not connected
to any hardware for subsystems at other levels. The
subsystems are not completely independent, however.
They are parts of a whole system with multiple lev-
els because users sometimes refer to data on a lower
subsystem in order to modify data on a higher sub-
system. Users might also manually reenter data from
a low subsystem into a high one, or operators might
transfer data storage media to higher subsystems.

Like single-level systems, ISPL systems are inher-
ently free of covert channels. Multilevel security is
compromised only when people fail to follow proper
procedures. The automated parts of the system can-
not themselves reveal data to a user not cleared for it.
However, trying to overcome some of the limitations
of an ISPL system may lead to complex procedures,
and the complexity brings serious dangers that acci-
dental compromise would become frequent and that
malicious compromise would become easy to arrange.

Because the subsystems are independent of each
other, none of the coordination among subsystems

can be automated. This tends to diminish all the po-
tential benefits of automation. Unless the required co-
ordination among subsystems is minor, an ISPL sys-
tem may well be too inconvenient, inaccurate, slow, or
expensive for an application. An integrated multilevel
system may then be the only practical option. Un-
fortunately, multilevel systems typically have many
covert channels.

Some Reasons for Covert Channels

Our aim is to avoid all covert channels in multi-
level systems. Present experience, however, is that
any practical multilevel system contains many covert
channels, despite the attempts of developers to elim-
inate them. It has been so difficult to avoid covert
channels because several highly desirable functions of
a multilevel system seem to produce covert channels
as a side effect. Fortunately, the essential multilevel
functions can be implemented without building covert
channels into the system.

The differences in functional capabilities between
ISPL systems and multilevel systems highlight the
major sources of covert channels in multilevel sys-
tems. In an ISPL system, which cannot have covert
channels, the absence of connections among the inde-
pendent subsystems for each level prevents the sys-
tem from doing all that a multilevel system can do.
Among the services requiring some manual assistance
in an ISPL system are reading consistent data from
lower levels, downgrading overclassified data, writ-
ing up reliably, and maintaining consistency among
the values of data items at different levels. A mul-
tilevel system needs no manual assistance with these
services, but the implementation techniques generally
introduce covert channels.

Reading Down An automated system might al-
low one process to change data that another process
is currently reading. Then, the value the reading pro-
cess receives could reflect neither the value before the
change nor the value after the change, but some use-
less mixture of the two values. Such mixed results
from reading are unacceptable in most applications.
The usual technique to prevent the problem is for the
reading process to lock the data before reading it.
The lock is not granted if any other process is cur-
rently writing the data, but once the lock is granted,
no other process is permitted to write the data until
the reading process releases the lock.

In a multilevel system with support for read-
ing down, this technique produces a covert chan-
nel. Lower-level processes can detect when a higher
process reads down to lower data because the higher

32

process holds a lock that prevents the lower processes
from writing the lower-level data. Data cannot be
locked for reading down without producing a covert
channel.

Different techniques free of covert channels can
ensure that high processes do not read inconsistent
data [1, 6, 7]. The most popular technique is for the
high process to check whether any lower process may
have written the data between the time when the high
process started to read the data and the time when it
stopped reading the data. If so, the read is potentially
inconsistent, and the high process repeats the entire
read again until it is sure that no lower process wrote
the data while it was being read. For some applica-
tions, there is a serious risk with this technique that a
high process that tries to read a lengthy and volatile
data item may keep trying to read the item for a long
time without ever succeeding. Other techniques may
be appropriate for those applications.

Downgrading All downgrading is inherently an ex-
ploitation of a covert channel. When the downgrad-
ing is legitimate, one could say that the channel is
not really "covert," but the intended downgrade of
overclassified data is often accompanied by some in-
cidental and unacknowledged downgrading of other
data. A Trojan horse might exploit the channel by
manipulating the other data. It may also be possible
for a Trojan horse to hide other data in the overclas-
sified data. Multilevel system designs cannot provide
legitimate automated downgrading and still avoid all
covert channels.

Writing Up When a user working at a low level up-
grades low data to a higher level, the data is said to
be written up.5 To make the writing reliable, the low
user might be notified whether sufficient resources at
the higher level are currently available to support the
writing up. This notification produces an exploitable
covert channel. Suppressing the notification makes
writing up unreliable; the user or program that wants
to upgrade data never knows whether the writing up
worked or not. Applications that need writing up typ-
ically need reliable writing up, not hit-or-miss writ-
ing up. Reliable writing up can be achieved with-
out covert channels by reserving sufficient resources
at higher levels to accommodate all potential requests
to write up. This is not easy to implement, and re-
serving the high resources may constitute a serious
loss of efficiency. A practical multilevel system ap-
parently cannot provide reliable writing up without
covert channels.

5If the user were working at the higher level, the upgrade is
from reading down, not writing up.

Consistency Across Levels When an application
requires consistent values in two data items, a change
to one may force a change to the other to keep them
consistent, or alternatively, a change to one may be
forbidden until after the other is changed to a consis-
tent value. This can be problematic in a multilevel
system when the two data items are classified at dif-
ferent levels [1]. If the levels are comparable, one
approach is secure and the other produces a covert
channel. Which is which depends on whether the data
item changed is at the lower or higher level. Neither
approach is secure if the levels are incomparable due
to differing compartment sets.

Fortunately, one result of a rational classification
of data is that any criterion of consistency applies to
data items that are all at the same level. A data item
would never have to be consistent with data items at
any other levels. A requirement for consistency with
a higher item implies that a user cleared to read the
lower item can infer something about the higher item,
which must have a consistent value. The existence
of the inference suggests either that the lower data
should be classified at the higher level or that the
higher data should be classified at the lower level. If
data were classified rationally, users cleared just for
lower data could not infer anything about higher data.

In practice, however, classification is not purely
rational, and some applications really may need con-
sistency across levels. This can be achieved without
covert channels, provided that reliable writing up is
properly implemented and the levels involved are all
comparable. The likely cost is gross inefficiency from
keeping the writing up reliable and some inconve-
nience because users must always change the lowest
items first. Data consistency across levels, freedom
from covert channels, and practicality seem to be in-
compatible in a multilevel system.

Resource Allocation among Levels

We turn next to another distinction between ISPL
systems and multilevel systems, their different abili-
ties to allocate resources among levels. In an ISPL
system, the allocation for a level is the hardware in
the subsystem for the level. In order to change the al-
location for a level, some piece of equipment must be
replaced, and reallocating resources from one level to
another is likely to involve bringing down two subsys-
tems for a while. In a multilevel system, reallocating
resources is more convenient. Resources can often be
allocated to whichever level can make the best use
of them at the time. This can greatly increase the
efficiency of the system. With a multilevel system
instead of an ISPL system, the users can get more

33

service from the same hardware or equivalent service
from less hardware.

Reading down, downgrading, writing up, and data
consistency across levels, as we explained before, are
not just functional distinctions between ISPL systems
and multilevel systems, but also common reasons for
covert channels in multilevel systems. Similarly, re-
source allocation is a common reason why multilevel
systems have covert channels, as well as being a func-
tional difference from ISPL systems.

Because a system often has many kinds of re-
sources, resource allocation may be the reason for
most of the covert channels in a multilevel system.
Among the space resources to be allocated are phys-
ical memory, entries in operating system tables soft-
ware, storage on disk, and bandwidth in a network
connection. The allocable time resources include pro-
cessor time (CPU time), service time from the op-
erating system, disk access time, and access time to
other multilevel devices such as terminals, printers,
tape drives, and network interface units. Resource
allocation is a primary function of operating systems,
but multilevel networks, database management sys-
tems, and even applications have resources of their
own to allocate among levels.

We consider four general strategies for resource
allocation among levels: static allocation, dynamic
allocation, delayed allocation, and manual allocation.
Dynamic allocation is the most efficient but inher-
ently produces covert channels. The other three
strategies are free of covert channels but can be inef-
ficient to the point of complete impracticality when
used for the wrong resources. Static allocation is the
simplest strategy and the least efficient. It is usually
as inefficient as an ISPL system. Delayed allocation
and manual allocation are more efficient, sometimes
approaching the efficiency of dynamic allocation. De-
layed allocation is better suited to some resources,
manual allocation is better for other resources, and a
combination of both may be better than either one in
some cases. We use the allocation of processor time
as the main example to illustrate the four strategies.

Static Allocation With static allocation, a fixed
portion of a resource is allocated to each level that
shares the resource. One level cannot borrow from
another level even when the first level could use more
than its share and the other level has idle capacity.

If processor time is statically allocated, the share
of time allocated to a level is generally determined
through the initial system configuration. The con-
figuration might assign time slots to each level. The
schedule would consist of a sequence of time slots that
is repeated for as long as the processor runs. The

share for a level is the length of its time slot in the
sequence or, if the level has several slots, their com-
bined length. Only processes at the proper level run
during the time slot for a level. The level gives up the
processor at the end of its time slot even if some pro-
cesses at that level still want processing time. On the
other hand, during the time slot for a level, the pro-
cessor is left idle whenever every process at the level
is waiting for I/O or whenever there are no current
processes at the level. This means that the processor
may be idle during the time slot for one level when
there are processes at another level that could have
been serviced.

Dynamic Allocation At the cost of producing a
covert channel, dynamic allocation avoids such wast-
ing of resources. Resources are allocated among levels
based on the current needs at each level. The simplest
algorithms allow one level to borrow freely as needed
from other levels. More complicated dynamic alloca-
tion algorithms place some limits on how much can
be shared or how frequently reallocation can occur.

If processor time is dynamically allocated, the cur-
rent loads might freely determine the share of proces-
sor time for a level, or the system may adjust shares
within configured limits. When the higher levels are
busy, processes at lower levels cannot get as much
processing time as when the higher levels are idle.
Because lower processes can detect whether higher
levels are relatively idle or relatively busy, there is an
exploitable covert channel.

For example, a high Trojan horse could send a
"one" bit during a particular period by requesting so
much processor time that the processor would seem
especially busy to the low Trojan horse receiving the
signal. To send a "zero" bit instead, the high Trojan
horse would refrain from requesting processor time so
that the low Trojan horse would find the processor
relatively idle. Irregular patterns of legitimate activ-
ity probably make the channel noisy, and the noise
reduces the effective bandwidth of the channel. But
the channel is not eliminated. Some bandwidth would
still be available for leaking information to users who
are not cleared to see it.

The covert channel from dynamic allocation is ex-
ploited by exhausting the resource. Processor time
like any resource is finite, but in some cases, proces-
sor time is effectively inexhaustible. If the heaviest
possible load on the processor would not consume
all the available time, there is always time available
whenever a level wants some. This eliminates the
covert channel, but it makes dynamic and static al-
location equally inefficient. Ensuring that process-
ing time is always available with dynamic allocation

34

would ensure that time is always available with static
allocation, too. The same amount of processing time
would go idle either way.6

Delayed Allocation Allocating resources to one
level may entail denying the same resources to other
levels that request them later. A dynamic allocation
strategy that could support instant reclamation of re-
sources need not have a covert channel. Each level
would have a basic allocation, but when a lower level
was not using all of its basic allocation, a higher level
wanting more than its own allocation could borrow
from the unused portion of the lower level allocation.
If the lower level later became busy enough to want
some of the borrowed allocation back, enough would
be instantly reclaimed for the lower level.

Similarly, if an intermediate level wanted more
than its allocation, it could also borrow from the lower
level. When a higher level had already borrowed from
the lower level, that would not influence how much
the intermediate level could borrow. If necessary, re-
sources that were borrowed for the higher level would
be instantly reclaimed and reallocated to the inter-
mediate level.

A higher level could not borrow resources from a
lower level while the lower level was using them or
while any intermediate level was already borrowing
them. Also, a lower level could never borrow from a
higher level although it would sometimes reclaim its
own basic allocation from the higher level or usurp
the resources of a still lower level that the higher level
happened to be borrowing.7

When a process at a level is given resources, it

6ln some circumstances, dynamic allocation might always
give enough time even though static allocation of the same total
capacity did not always give enough. This may occur if the
limits on the load yield a maximum combined load for all levels
that is less than the sum of the maximum loads for individual
levels. The most likely reason for such a pattern of loads is
that some other dynamically allocated resources are exhausted.
The allocation routines for the other resources would then have
exploitable covert channels even though the allocation routine
for processor time did not.

When a system involves incomparable levels, the rules for
borrowing are more complex. Incomparable levels cannot bor-
row from each other, nor can they compete to borrow from
another level lower than them. One way to avoid competition
among incomparable levels is to allow only some of the higher
levels to borrow from a lower level. The system configuration
would select which higher levels can borrow from a level. The
levels selected to have borrowing privileges for a resource at a
lower level must be mutually comparable. For any two incom-
parable levels, the selections for a lower resource might contain
one or the other of the two incomparable levels, or perhaps
neither, but certainly not both. Because any level not selected
could not borrow the lower resource at all, it would never com-
pete for the resource with another incomparable level that was
selected.

might be told whether they come from the basic al-
location for its own level, and if not, it could be told
from which lower level it is borrowing them. It must
not be informed whether the resources were reclaimed
from a higher level. There is no covert channel be-
cause the borrowings of higher levels do not affect the
resource amounts available for a lower level.

When requests for resources are satisfied, the re-
sources are allocated with the same speed whether
the resources are currently free or currently being
borrowed at a higher level. If free resources might
be allocated instantaneously, then borrowed resources
must be reallocable to a lower level instantaneously,
too. Since instantaneous reallocation is not feasible
for most resources, instantaneous allocation of free
resources usually cannot be provided either. If bor-
rowed resources can be reallocated only slowly, free
resources must be allocated just as slowly. The de-
layed allocation strategy is named for the sometimes
substantial delays the strategy can introduce in the
allocation of resources.

For a delayed allocation of processor time in a sys-
tem with only comparable levels, throughput could be
maximized by making a basic allocation of all the pro-
cessor time to the lowest level. Each level would seem
to have available to it all the time that lower levels
were not already using. At the end of each time slice,
the processor would be allocated to the lowest level
with a process ready to run.8 An interrupt for the cur-
rently allocated level could be serviced promptly, but
an interrupt for another level would not be serviced
until the next time slice when no lower tasks were
pending. With all time slices being of equal duration,
this delay in servicing interrupts conceals whether the
processor was idle when the interrupt occurred or was
busy servicing a higher level. The delay clearly wastes
some processor time in order to avoid the covert chan-
nel found with dynamic allocation.

Since a lower level would not be prevented from
consuming all the time and shutting out all higher lev-
els, some installations may prefer instead to give each
level a basic allocation in order to guarantee some

8All levels except the lowest level are borrowing their time
from the basic allocation to the lowest level. Since two incom-
parable levels cannot compete for the same resource, a system
with incomparable levels needs some changes to the algorithm.
The simplest variation is to specify a repeating sequence of
time slices. The slices in the sequence need not all be the same
length of time, but for each cycle through the time slices, each
slice must be the same length as it was in the first cycle. All
the time slices would still be in the basic allocation for the
lowest level, but different sets of borrowing levels should be
selected for different time slices in the sequence to ensure that
each incomparable level has chances to borrow processor time.

35

time for each level. This fairness comes at the cost
of lower overall efficiency. Whenever multiple levels
compete for a shared resource, any strategy to pre-
vent denial of service to high levels will either require
more resources or produce a covert channel, entailing
compromise of multilevel security.

The advantage of dynamic allocation is its more
efficient use of processor time than with static allo-
cation. In fortunate circumstances, delayed alloca-
tion is essentially as efficient as dynamic allocation.
But in ordinary circumstances, the delays introduced
to conceal processor loads at higher levels make de-
layed allocation less efficient than dynamic allocation.
And in unfortunate circumstances, delayed allocation
could be even less efficient than static allocation.

Manual Allocation A contributing factor in pro-
ducing a covert channel with dynamic allocation is
that the allocation is changed automatically based on
data from untrusted software. Changes in the allo-
cation based on trustworthy data do not necessarily
produce a covert channel. The operators of a multi-
level system could sometimes switch the system man-
ually among a variety of different multilevel alloca-
tions appropriate for different situations. The opera-
tors would choose an allocation based on their expec-
tations of the upcoming resource needs at each level.
They must be careful to use information from outside
the system, not simply the current loads at each level.
Those loads may reflect the influence of Trojan horses
instead of legitimate activity.

More automated variants of manual allocation are
also possible. Some information within the system
could be used for automatic changes in the alloca-
tions of resources among levels. The information that
is safe to use is information that users or operators in-
put manually and that comes through trusted paths
to ensure freedom from the influence of any untrusted
software. On a multilevel system, safe inputs may in-
clude user logins, user logouts, user requests to change
to a new level, and possibly some other inputs through
an operator console.

These inputs must follow trusted paths from the
user or operator to the TCB. There is no covert chan-
nel because Trojan horses are incapable of spoofing
what a user does through a trusted path. That is pre-
cisely what makes a path qualify as a trusted path.
Since Trojan horses cannot produce any of the manual
inputs that determine how allocations are updated in
the manual allocation strategy, they cannot influence
the changes in allocation to any level. It is crucial that
the only information used to adjust the allocations
is information the operating system receives directly
from users through trusted paths.

Manual allocation of processor time can be rea-
sonably efficient in a multilevel system used primarily
for online processing. If the user inputs for logging in,
logging out, and changing level all come via a trusted
path, the allocation of processor time for a level can
be proportional to the number of user sessions cur-
rently logged in at a particular level. This is often a
fair measure of the expected load at that level. No
time would go to levels with no current user sessions.
When all current sessions are at one level, that level
would be allocated all the processor time. Allocations
would be subject to change each time a user logged
in or out or changed from one level to another.

The ratio of the number of current user sessions
at a level to the total number of current sessions is a
secure basis for manual allocation only on a system
where the total number of users logged in is unclas-
sified. If users with low clearances must not know
how many users are logged in at higher levels, then
the ratio determining the allocation for a level should
instead compare the current sessions at the level to
the sessions at or below the level. Manual allocation
based on this ratio would be somewhat less efficient.

Efficiency might be enhanced by taking into ac-
count some other information about current user ses-
sions that the trusted paths have validated. The
user's name, the time of day, and, if the system is
distributed, the processor supporting the user session
could be used to anticipate different loads from differ-
ent sessions and calculate allocations based on those
expectations. The weights for the calculations should
come from tables the operators have prepared in ad-
vance, not from the current demands of the sessions.

In a multilevel system where online processing pre-
dominates but there is some background or batch
processing, this approach should be modified so that
some time is allocated to levels that may have offline
processing. Otherwise, offline processing at a level
would cease whenever there happened to be no cur-
rent user sessions at the level.

Reallocation based solely on manual inputs would
not be as efficient as dynamic allocation based on all
available information. It should still be more efficient
than a static allocation that never changes. Manual
allocation, like delayed allocation, is less efficient than
dynamic allocation. Both allocation strategies are
compromises between dynamic allocation and static
allocation.

Manual and delayed allocation can be combined.
The same kinds of inputs as the manual strategy uses
to update allocations can be used to update the ba-
sic allocations for the delayed strategy. The hybrid
allocation strategy improves the efficiency of delayed

36

allocation, and with resources for which delayed allo-
cation is appropriate, the hybrid strategy is more ef-
ficient than manual allocation, too. The hybrid strat-
egy cannot outperform the best dynamic allocation
algorithm, nor is it likely even to be equally efficient.
However, the covert channels of dynamic allocation
are absent from a combination of manual and delayed
allocation, just as they are with static allocation, sim-
ple delayed allocation, and simple manual allocation.

Allocating Device Resources
We call a device multilevel if it ever stores or trans-

mits data for more than one level. At one extreme,
the device may always handle hundreds of levels, or
at the other extreme, it may handle one level on some
days and another level on the other days.

As a first example of a multilevel device, we con-
sider a multilevel terminal. It is inconvenient for a
user to move to a different terminal in order to work
at a different level or for the user to have as many ter-
minals on one desk as there are levels of work to do.
With one multilevel terminal, terminal access time
could be allocated to whichever level the user cur-
rently wants. Multilevel terminals would cost more
than single-level terminals, but the convenience may
justify the added cost. And if one multilevel terminal
fully replaces several other terminals, there may even
be a cost savings.

The multilevel terminal would need some special
manual inputs for selecting the level where the user
wants to allocate the terminal access time. A reset
button, a dial or switch for indicating a level, and
a ready button would be enough. When the user
presses the reset button, the terminal clears its screen
and any volatile memory, locks the keyboard, and un-
locks the level dial. Then, the user can set the dial to
the new level. When the user presses the ready but-
ton, the terminal locks the dial, selects the single-level
communication line at the level corresponding to the
setting of the dial, and unlocks the keyboard.

When the terminal is installed, the security ad-
ministrators should make sure that the dial settings
correctly label the processors that can be accessed
through the corresponding single-level lines. The
terminal must also be protected from sabotage, of
course. We caution against making the multilevel ter-
minal too sophisticated. A multilevel workstation is
far less likely to be implemented free of covert chan-
nels than is a basic multilevel terminal. Pushing the
reset button must remove all traces of whatever had
been done before.

A similar approach would work for a multilevel
printer or multilevel tape drive. The reset button of

a printer must clear all physical traces of what was
printed at the previous level. The justification for a
multilevel printer or tape drive is probably lower cost
or greater convenience again.

Trusted Network Interfaces A network of mul-
tilevel lines is more convenient for operators to install
and maintain than are separate networks of single-
level lines for a variety of levels. The convenience may
justify the cost of the trusted network interface (TNI)
units to connect each single-level communication line
to a multilevel line. Especially in a wide-area net-
work, the savings from having fewer cables may also
offset the cost of TNI units.

If a multilevel line is a radio-frequency cable, each
level can be statically allocated its own frequency
band. A TNI unit would tune to a band based on
its control settings. Whoever installs or maintains a
unit connecting a multilevel line to a single-level line
must check that the control settings of the unit agree
with the level of the single-level line.

TNI units should be connected to the communi-
cation lines of single-level processors and devices so
that they can communicate over the multilevel net-
work lines. Rather than having TNI units connected
to the various single-level lines for a multilevel de-
vice such as the terminal described earlier, one TNI
unit could be embedded in the multilevel device so
that one multilevel line could replace all its single-
level lines. The terminal would retune its frequency
based on the current dial setting when the user pushed
the ready button. Embedding a TNI unit is also an
option for a multilevel printer or multilevel tape drive.

A network of multilevel lines with TNI units wher-
ever processors and devices connect to the network
is functionally equivalent to separate single-level net-
works. A single-level processor could communicate
with other single-level processors and devices only if
they are at the same level. It could communicate
with the multilevel devices we described only when
they were currently allocated to the same level, too.

More complex TNI units might support multiple
single-level lines or support an allocation strategy for
the multilevel lines more efficient than static alloca-
tion of frequency bands to levels. We suspect the
added efficiency would not offset the problems of the
extra complexity: a higher cost per unit and reduced
assurance of multilevel security.

Cryptographic methods can supplement such TNI
units but are never a substitute. If network lines are
vulnerable, encryption can help preserve the confiden-
tiality and integrity of messages transmitted over the
network. However, if the network does not carefully
allocate resources based on the levels of the decrypted

37

messages, there are covert channels. Users communi-
cating at low levels could detect heavier and lighter
loads on the network from activity at higher levels,
possibly due to Trojan horses. Encrypting messages
does nothing to eliminate this covert channel.

Multilevel Disk Drives Any multilevel applica-
tion requires some support for reading down. Reading
down can be implemented with multilevel processors,
multilevel disk drives, some other multilevel storage
media, or a combination. Disks are more generally
useful for reading down than are other storage de-
vices. Also, we believe that multilevel disk drives are
much easier to build free of covert channels than are
multilevel processors. We are not certain that multi-
level drives really can be implemented without covert
channels as nobody has yet tried, but we sketch a
design that seems feasible.

The design uses manual allocation of the stor-
age space on the disk and uses a combination of de-
layed and manual allocation for the access time to
the disk drive. The interface for the operator has a
reset button, a restore button, an accept button, and
various browsing buttons to control a display panel.
The interface to the rest of the multilevel system is
through separate single-level lines for each level the
drive supports.9

A special single-level line connects the disk drive
to a single-level processor with a configuration table
that the operator maintains. The table shows (1) the
levels of the other single-level lines, (2) which levels
are higher or lower than other levels,10 (3) what level
of data is to be stored in each sector of the disk, (4)
how long each period in the access time schedule lasts,
(5) which level is the basic level for each time period
in the schedule, (6) which higher levels may borrow
time during each time period,11 and (7) what position
the disk arm is to be in at the end of each time period.

When a configuration table takes effect, the allo-
cation of storage space to a level is the sectors that
the configuration assigns to that level. The allocation
strategy for access time is a hybrid of delayed and
manual allocation. The effective configuration gives
the parameters for delayed allocation. The basic al-
location of access time to a level is the time periods
where that level is the basic level.

9 As before, the single-level lines could be replaced with an
embedded TNI unit and a multilevel line.

10The level of the special line should be lower than the levels
of the other lines.

1'if the disk supports some incomparable levels, the borrow-
ing levels for a time period must be chosen to be mutually
comparable.

While the disk drive is providing its regular read-
ing and writing services, the drive rejects any requests
to change its internal configuration table. When the
operator pushes the reset button, the disk drive locks
all the buttons, stops regular reading and writing ser-
vices, and waits to receive a new configuration table
through its special line. The operator working on the
processor where configuration tables are maintained
should request a change to the new configuration. If
the disk drive finds the new configuration unaccept-
able, it shows an error code in its display panel and
unlocks the reset and restore buttons. The operator
has a choice of fixing and resubmitting the new con-
figuration or restoring the old configuration.

If the drive would accept the new configuration, it
unlocks all buttons and prompts the operator to dou-
ble check the changes. The operator uses the brows-
ing buttons to check all parts of the new configuration
and perhaps also the old configuration to be sure that
the configuration the disk drive received is exactly as
intended. This precaution means that the single-level
processor where the table is maintained and the path
connecting the processor and disk drive do not have
to be completely trusted.

If the configuration does not look right, the oper-
ator pushes the restore button. The disk drive locks
the restore and accept buttons, discards the new con-
figuration, and resumes regular service with the old
configuration. If the operator pushes the accept but-
ton instead, the restore and accept buttons are still
locked, but it is the old configuration that is discarded
and the new configuration that is used to resume reg-
ular services. Also, before resuming regular reading
and writing services with a new configuration, the
drive clears any disk sectors then allocated to levels
lower than before.12 During regular services, the reset
and browsing buttons remain unlocked.

While the disk drive serves a level, it accepts in-
puts and returns outputs through the communication
line for the level. The other communication lines are
ignored. The drive honors any requests to read or
write sectors at the current level. To support reading
down, the drive also honors requests to read sectors
at lower levels.

Within the disk drive itself, there is a scheduler
that determines which level to serve and for how long.
The scheduler cycles through the schedule of time pe-
riods in the current configuration. At the beginning of

12Any sector allocated to a level incomparable to its old level
is also cleared. If the level of a sector is left unchanged, its
contents are kept. The contents are also kept in a sector whose
level increases. In such a sector, the contents are effectively
upgraded to the higher level.

38

a time period, it serves the basic level for the period.
When appropriate, the scheduler may change level be-
fore the period ends and allocate whatever remains of
the period to the lowest level that can borrow time in
the period. It may also change level more times and
allocate the remainder of the period to the next high-
est borrowing level.13 If the highest borrowing level
for the period is reached, the level stays the same un-
til the start of the next period - when it becomes the
basic level for that period.

The scheduler in the disk drive changes to the next
highest borrowing level when the current level has no
more disk accesses to make. If the current level is al-
ready the highest borrowing level, the drive waits idly
until the period ends or more requests are received at
the highest level. The drive does not change level if
there would not be enough time to establish the new
higher level and still position the disk arm as the con-
figuration requires before the period ends. Similarly,
as the period draws to its end, the disk drive rejects
any access request that could not be completed in
time to position the disk arm properly afterward.

The covert channel that would be produced by a
dynamic allocation of access time is not found in this
design. The allocations of storage space on the disk
and the parameters used for delayed allocation of ac-
cess time change only when the configuration changes,
and that is only when the operator pushes the appro-
priate buttons. While the configuration remains un-
changed, the performance of a disk drive in one time
period has no effect on its performance in later time
periods. Within a time period, the service to a level
depends just on the requests from that level and lower
levels. The higher borrowing levels receive no service
until the lower levels voluntarily release their claims
on the time period.

The sometimes long delays while a multilevel disk
drive is inaccessible from a level make the drive in-
appropriate for the I/O of many ordinary processes.
We suggest that most data be kept on single-level
disks and accessed there primarily. Multilevel disks
would hold only replicas of data that is sometimes
read down. The following scenario explains how this
might work.

A Scenario with Upgraded Replicas An ordi-
nary process running on a single-level processor at
some low level writes to a file stored on a single-level
disk at the low level. When the process releases its

write lock, a new value of the file is available for other
processes at the low level to read from the same disk.
But if the file header indicates the file is replicated,
the replicas do not yet have the new value.

A replica management (RM) process on the same
processor sends the updates to RM processes for any
other disks that the file header indicates keep replicas
at the low level. Although some of these RM processes
may run on other processors, all run on single-level
processors at the low level. The RM processes update
the replicas on their disks to reflect the new value of
the file. Multiple copies at the low level increases the
availability of the file to users throughout the system.
If its disk is multilevel, an RM process also records
the new time stamp of the updated replica in a special
disk segment for the low level.

Periodically, each process of another kind, the up-
graded replica management (URM) processes, reads
down on a multilevel disk in the time stamp segments
for any levels lower than the level of the processor
where the URM process runs. For each file with an
upgraded replica at the high level of its processor, the
URM process checks whether the time stamp of the
lower replica has changed since last checked. If so, the
URM process reads the updated lower replica of the
file. It is again reading down on the multilevel disk.

The URM process sends the updates to the ap-
propriate RM processes at the high level. As before,
the RM processes write the new value of the file into
the replicas on their disks at the high level. If any of
these disks are multilevel, that may trigger another
round of propagating the updates to replicas at still
higher levels.

The new value of the file becomes available to or-
dinary processes running on single-level processors at
a variety of levels. A process running on a processor
at one of those levels can read any replica of the file
found on a single-level disk at the same level.14

In the scenario above, all processes can run on
single-level processors. Ordinary processes can do all
their reading and writing on single-level disks. The
only processes that must access multilevel disks are
the replica management (RM) and updated replica
management (URM) processes. An RM process reads
and writes time stamp segments and replicas at its
own level, and the URM processes read down to lower
time stamp segments and lower replicas.15

1'Because levels that may borrow time within a period are
chosen to be mutually comparable even when the drive sup-
ports incomparable levels, the next highest borrowing level is
uniquely defined until the highest borrowing level is reached.

14If the single-level disk is remote from the process, pro-
cesses on other processors at the same level would help with
the reading.

15A disk controller process on the same processor as the RM
or URM process might mediate its reading and writing of the
multilevel disk.

39

The inefficiencies of the allocation strategy for ac-
cess time to the multilevel disk drives may hinder the
upgrading of new or changed files. To update the up-
graded replicas at the same time as the changes are
made in the file itself would require reliable writing
up, not just reading down. Because a covert-channel-
free system is not expected to have reliable writing
up, there will be some lag between the writing of a
file and the updating of the upgraded replicas. The
choice of an allocation strategy for the multilevel disk
drives would affect only how long that lag can be. It
does not affect any other processing. In particular,
the I/O of ordinary processes and the propagation
of replicas within a level are unaffected. They can
benefit from all the efficiencies of high-performance,
single-level disks.

Allocating Software Resources

While discussing multilevel devices, we have ig-
nored multilevel processors and assumed that the
multilevel devices would have to communicate with
single-level processors. We now consider some of the
resources of a multilevel processor. A multilevel pro-
cessor has a trusted computing base (TCB), typically
consisting of a kernel and some trusted processes. The
software for the kernel and most trusted processes
runs multilevel. The resources of that software are
allocated among the various levels that the software
serves.

As with hardware resources, dynamically allocat-
ing these resources on the basis of current demand
creates an exploitable covert channel. Since the re-
sources are limited, a low process employing the ser-
vices of the multilevel software can detect how much
has been allocated to higher levels, and a high pro-
cess can send signals by modulating its demands on
the multilevel software services. Static, delayed, or
manual allocation, on the other hand, would produce
no covert channels. Static allocation is feasible for
most TCB software resources but is relatively ineffi-
cient. Manual allocation is often feasible and more
efficient. Delayed allocation is also more efficient but
would be too difficult to implement correctly for many
software resources.

Kernel Resources The innermost layers of a
trusted operating system for a multilevel processor
are called a trusted executive or kernel. The layers
chat concern us include the layer presenting the ab-
straction of processes and all lower layers. These are
,he layers that do not run as processes. The ker-
nel is inherently multilevel, and many of its resources

are also multilevel. The execution time of the ker-
nel is allocated among the levels. An allocation of
processor time to a level includes the time the ker-
nel spends serving that level, not just the execution
time of single-level processes at the level. The storage
resources of the multilevel kernel in a multilevel pro-
cessor include most of the system data space. At any
given moment, some of these resources would be fully
allocated to the same level as is the processor time.
Other storage resources might be partially allocated
among levels.

It is extremely difficult to avoid every covert chan-
nel in the allocation of kernel time and storage in a
multilevel processor. Some kernel resources can easily
be allocated among levels using a static or manual al-
location strategy, but it is unlikely that all resources
of a practical multilevel kernel would be so safely al-
located, especially in the lowest layers of the kernel.

A multilevel processor embedded in a special-
purpose device such as a disk drive, printer, terminal,
or network interface unit should need such a simple
executive that safe allocation of all resources can be
achieved without sacrificing practicality. The execu-
tive probably would not even support real processes.

A more general-purpose multilevel processor sup-
porting user processes, however, seems doomed to
have some covert channels at least within its kernel.
The service time and data spaces for the lowest kernel
layers could not avoid load-influenced dynamic alloca-
tion. The covert channels might all have small band-
widths or high noise, but they would still be there
for malicious users to exploit, however slowly. Even
some special-purpose multilevel processors, such as
file servers, may be too sophisticated to be reliably
free of covert channels.

To date, no designers have even come close to pro-
ducing a covert-channel-free kernel for a multilevel
operating system. In a typical design for a multilevel
kernel, many low-bandwidth covert channels are not
even identified.

Trusted Process Resources Secure allocation
among levels is somewhat easier for the resources of
multilevel trusted processes than for kernel resources.
This may be largely irrelevant, however, because mul-
tilevel processes exist only on multilevel processors
with more sophisticated kernels. Since the kernels al-
ready would have introduced some covert channels,
the effort to avoid all covert channels in the trusted
processes may be futile. The result would still be a
TCB with some covert channels.

As with the kernel, the allocation of the execution
time of a trusted process to a level must be considered
part of the allocation of processor time to the level.

40

Static allocation of trusted process time is simpler,
but the efficiencies of manual allocation might justify
the extra complexity.

The virtual address space of a trusted process in
a multilevel processor gives it storage resources that
can be allocated among the levels that the process
serves. Some variables in the address space would be
fully allocated at any moment to the same level as
the process time. Other storage resources, especially
structures such as tables, lists, and buffers, might be
partially allocated among levels based on a static al-
location, or perhaps a manual allocation. Dynamic
allocation based on current demand would create a
covert channel, of course.

Memory management for the address spaces of
trusted processes differs from the memory manage-
ment for single-level process address spaces. Because
the storage resources of a trusted multilevel process
are allocated among multiple levels, it is not safe to
handle them like those of untrusted single-level pro-
cesses. The level of an untrusted process labels its
whole address space, but the labeling of trusted pro-
cess storage is not so simple.

The data of a trusted process must always be
clearly labeled when it is stored in physical mem-
ory, when it is communicated over the memory bus,
when it is kept on a paging disk, or when it is sent
over communication lines between the processor and
the paging disk. Otherwise, it becomes impossible to
maintain control over the allocations among levels for
various resources, including space in physical mem-
ory, access time to the memory bus, storage space
on the paging disk, access time to the paging disk,
and access time to the lines connecting the proces-
sor and the disk. Without explicit labels on trusted
process data at all times, current demands would in-
fluence the allocation of those resources. Their allo-
cation strategies would degenerate into some variety
of dynamic allocation with covert channels and com-
promise of multilevel security.

Architectural Implications
Avoiding all covert channels in multilevel proces-

sors would require static, delayed, or manual alloca-
tion of all the following resources: processor time,
space in physical memory, service time from the mem-
ory bus, kernel service time, service time from all mul-
tilevel processes, and all storage within the address
spaces of the kernel and the multilevel processes. We
doubt that this can be achieved in a practical, general-
purpose processor. Perhaps the simplest strategy,
static allocation, would be possible, but then the mul-
tilevel processor is not significantly more efficient than

a set of single-level processors. It would be better to
replace it with single-level processors and have real
assurance of freedom from covert channels in proces-
sors. We suggest that multilevel systems not have any
multilevel processors.

Having no multilevel processors certainly helps to
minimize the TCB for mandatory security. This is
especially appropriate for the high-assurance systems
at the Orange Book classes B3 and Al. Because of
the rapid drop in prices for processors and memo-
ries and the relatively wide selection of secure single-
level processors, limiting a multilevel system to single-
level processors may impose little or no penalty in
efficiency. We believe the best architecture for most
multilevel applications is a Distributed, Single-level-
processor, Multilevel-secure (DSM) system. Even if
a multilevel application does not need a distributed
architecture for any other reason, we feel it should be
distributed in order to be multilevel secure.

The network in a DSM system must not intro-
duce covert channels. A simple option is a separate
network for each level to connect the single-level pro-
cessors at that level. A potentially less costly net-
work has multilevel lines connecting all the processors
and has the trusted network interface (TNI) units
sketched earlier ensuring covert-channel-free alloca-
tion of the lines. The two options are functionally
equivalent. The difference is in the number and ca-
pacity of the lines and in the hardware at the interface
between the processors and the network.

Multilevel System Benefits in DSM Systems
Each processor of a DSM systems handles just one
level, as in an ISPL system. An important question
is whether a DSM system is as limited in its function-
ality as an ISPL system.

Downgrading, writing up reliably, and maintain-
ing data consistency across levels cannot be fully au-
tomated as they can be in systems with multilevel
processors and covert channels, but they can at least
be more automated than in an ISPL system. Many,
perhaps most, multilevel applications require none of
these functions, but some do need one or more of
them. Manual contributions to reliable writing up
or to data consistency are inconvenient, but the only
practical alternatives compromise multilevel security.
Downgrading is so fraught with risk that it is rea-
sonable to insist that some critical step be performed
manually. The inconvenience is worthwhile.

Reading down is the essence of multilevel process-
ing. Users perceive a system as multilevel if they have
a choice of levels at which to work and if they can refer
to the data at lower levels while creating or updating
data at the current working level. Reading down and

41

ordinary single-level services are sufficient for most
multilevel applications. DSM systems need not have
the same problems with reading down as ISPL sys-
tems do. Reading down can be supported with mul-
tilevel disk drives similar to those described earlier.
However, most disk drives in a practical DSM system
should probably still each service a single level.

Some multilevel hardware in DSM systems can
also escape the limitations on resource allocation in
ISPL systems. Cost and convenience arguments jus-
tify static allocation of multilevel network lines and
manual allocation of such resources as terminals, tape
drives, and printers.

Partitioning Levels In the classification scheme of
the U.S. Department of Defense, there are four hier-
archical levels: unclassified, confidential, secret, and
top secret. A level at which data is classified might
also be one of the four hierarchical levels plus a set
of nonhierarchical compartments. Many other classi-
fication schemes are similar. A user's clearance is the
highest level of data the user may see. The clearance
is the hierarchical level to which the user is cleared
plus any compartments for which the user is cleared.

As noted above, it is best to run a multilevel ap-
plication as system high if every user has the same
clearance, covering all data levels in the application,
no matter how many. However, a DSM system is ap-
propriate when some users have different clearances
and data is classified over a range of levels. Normally,
a DSM system has different processors for each differ-
ent data level. This is practical for many multilevel
applications, ones with data at only two levels or at
only a few levels. Some other applications, though,
involving various nonhierarchical compartments use
dozens or even hundreds of data levels. Processor
prices may be falling, but a DSM system with at least
one single-level processor for each of hundreds of lev-
els would be impractical. However, a DSM solution
may still be reasonable, provided that the number of
different user clearances is fairly small, even though
the number of different data levels is large.

We describe a DSM system with many data levels,
many users, and a handful of different user clearances.
A few users, perhaps just the system administrators,
might be cleared for all levels, but most would have
limited clearances. Probably, those clearances differ
in their sets of compartments. The data levels are
partitioned based on the overlaps and differences be-
tween pairs of clearances. Each partition contains one
or more data levels; each data level belongs in one
partition; and each clearance includes one or more
complete partitions. In the best case, there are ex-
actly as many partitions as clearances, but usually

there would be more partitions.1"
The processors are allocated, not to a single level,

but rather to a single partition. A processor may
handle data at every level within its partition and may
communicate with any other processors sharing the
same partition. It should have functionality similar
to that required for class Bl in the Orange Book.

A user of a single-partition processor could be any-
body whose clearance includes the partition. Because
of how the levels are partitioned, the user's clearance
will include all or none of the levels in the partition.
This is why multilevel security is not compromised
even though we expect the processor to have plenty
of covert channels. The channels are tolerable be-
cause their exploitation could leak information only
between levels in the same partition. A malicious
user cleared for one level in a partition would not
bother to exploit a covert channel in order to access
another level in the partition because the user's clear-
ance must include the other level, too.

Because covert channels can still leak within a par-
tition, printed output from a partitioned DSM system
can safely be released without review only if the label
that the system generated is the highest level of the
partition. Users can release output with other labels
after manually confirming the labels.

Conclusions

Until feasible techniques are found to develop
a covert-channel-free TCB for a practical multilevel
processor, most multilevel systems should be DSM
systems with some multilevel disks and perhaps oilier
multilevel devices, but with no general-purpose, mul-
tilevel processors. The current research and develop-
ment efforts on multilevel systems seem to focus on
operating systems for multilevel processors, database
management systems for multilevel processors, multi-
level networks among multilevel processors, and dis-
tributed operating systems with multilevel processors.
These systems are suitable only for installations that
really must tolerate compromises of multilevel secu-
rity through covert channels.

Promising directions for new efforts to serve secure
installations include the development of multilevel
disk drives and trusted network interfaces without
covert channels. Other efforts should examine how
single-level processors can use the multilevel disks

16In the worst case, n mutually incomparable clearances form
2" — 1 partitions. Probably, the levels in most of those parti-
tions would never be used to classify any data in the system
and so would never need resources. Partitions with no resource
needs can be ignored.

42

and networks to build basic DSM systems that pro-
vide reading down in addition to the regular services
of single-level distributed systems. Further efforts
should enhance the basic DSM systems to build more
sophisticated DSM systems or multilevel database
management systems.

Because these implications for multilevel system
architectures represent such a radical shift from the
predominant direction of research and development,
we encourage readers to dispute our conclusions. Op-
timists may wish to explain why most installations
should tolerate covert channels or how a practical,
general-purpose, multilevel processor can be devel-
oped with no covert channels. Pessimists may wish to
explain why multilevel disk drives or trusted network
interfaces cannot be developed without covert chan-
nels or why they could not be used to build practical
DSM systems. We feel that avoiding all covert chan-
nels makes good sense for multilevel systems, that the
current dismal state of the art is sufficient evidence of
the unsuitability of architectures with multilevel pro-
cessors, and that it is worth a serious effort to build a
prototype of a covert-channel-free, multilevel system
that has multilevel disk drives and single-level proces-
sors instead of multilevel processors.

References

[1] A. Downing, I. Greenberg, and T. Lunt. Is-
sues in distributed system security. In Proc. 5th
Aerospace Computer Security Conference, De-
cember 1989.

[2] R.J. Feiertag. A technique for proving specifi-
cations are multilevel secure. Technical Report
CSL-109, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, January 1980.

[3] J.W. Gray III. Toward a mathematical foun-
dation for information flow security. In Proc.
1991 Symposium on Research in Security and
Privacy, pages 21-34, Oakland, CA, May 1991.
IEEE Computer Society.

[4] W.-M. Hu. Reducing timing channels with fuzzy
time. In Proc. 1991 Symposium on Research in
Security and Privacy, pages 8-20, Oakland, CA,
May 1991. IEEE Computer Society.

[5] P.A. Karger and J.C. Wray. Storage channels in
disk arm optimization. In Proc. 1991 Symposium
on Research in Security and Privacy, pages 52-
61, Oakland, CA, May 1991. IEEE Computer
Society.

[6] T.F. Keefe and W.T. Tsai. Multiversion concur-
rency control for multilevel secure database sys-
tems. In Proc. 1990 Symposium on Research in
Security and Privacy, pages 369-383, Oakland,
CA, May 1990. IEEE Computer Society.

[7] W.T. Maimone and I.B. Greenberg. Single-
level multiversion schedulers for multilevel secure
database systems. In Proc. 6th Annual Com-
puter Security Applications Conference, Decem-
ber 1990.

[8] D. McCullough. A hookup theorem for multi-
level security. IEEE Trans. Software Engineer-
ing, 16(6), June 1990.

[9] NCSC. Department of Defense Trusted Com-
puter System Evaluation Criteria (TCSEC). Na-
tional Computer Security Center, December
1985. DOD-5200.28-STD, Orange Book.

[10] P.G. Neumann, N.E. Proctor, and T.F. Lunt.
Preventing security misuse in distributed sys-
tems. Technical report, Computer Science Lab-
oratory, SRI International, Menlo Park, CA,
March 1992. Project 1021, Final Report.

[11] R. Pike, D. Resotto, K. Thompson, H. Trickey,
T. Duff, and G. Holzmann. Plan 9: The early pa-
pers. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, July 1991. Computing Science
Technical Report No. 158. This report contains
7 conference papers presented during 1990 and
1991.

[12] P.A. Porras and R.A. Kemmerer. Analyzing
covert storage channels. In Proc. 1991 Sympo-
sium on Research in Security and Privacy, pages
36-51, Oakland, CA, May 1991. IEEE Computer
Society.

[13] J.M. Rushby and B. Randell. A distributed se-
cure system. IEEE Computer, 16(7):55—67, July
1983.

[14] J.C. Wray. An analysis of covert timing chan-
nels. In Proc. 1991 Symposium on Research in
Security and Privacy, pages 2-7, Oakland, CA,
May 1991. IEEE Computer Society.

43

Assessing Modularity in
Trusted Computing Bases1

J. L. Arnold, D. B. Baker, F. Belvin,
R. J. Bottomly, S. Chokhani, and D. D. Downs2

Abstract
In 1989, the National Security Agency (NSA) established a System Architecture
Working Group (SAWG) to define and clarify the modularity criterion contained
within the System Architecture requirement for Class B2 of the Department of De-
fense Trusted Computer System Evaluation Criteria. This paper summarizes the find-
ings of the SAWG, which recommended that the following attributes be subjected to
detailed analysis in order to assess modularity: code cohesion, complexity, coupling,
data cohesion, duplicate code and data, and extraneous code and data.

1 Introduction

In 1989, the National Security Agency (NSA) formed a System Architecture Working
Group (SAWG), whose primary mission was to review and clarify the modularity
criterion of the System Architecture requirement specified in the Trusted Computer
System Evaluation Criteria (TCSEC) [1] for classes B2 and B3/A1; specifically:

The TCB shall be internally structured into well-defined largely
independent modules.

The goal was to develop a definition of modularity for class B2 and any further
definitions and clarification required for class B3/A1. The product was to be a report
providing guidance to NSA teams tasked to examine and evaluate the modularity of
systems designed to meet the TCSEC System Architecture requirement for classes
B2 and above. This paper is a summary of.the technical content of that report. [8]

The motivation for the TCSEC's modularity requirement is to achieve understandabil-
ity, maintainability, and testability, rather than to provide some security functionality.

1Xhis paper reports work conducted under funding from the National Security Agency.
2J. L. Arnold and R. J. Bottomly are with the National Security Agency, Ft. George G. Meade,

MD; D. B. Baker (team leader) and D. D. Downs are with The Aerospace Corporation, Los Angeles,
CA; and S. Chokhani and F. Belvin are with the MITRE Corporation, McLean, VA, and Bedford,
MA.

44

Modularity adds assurance that the existent security functionality is understood and
will remain intact through the lifetime of the system.

The most efficient and effective way to meet the modularity requirement is to first
design the system using some form of functional decomposition. In fact, software en-
gineering literature suggests that attempting to develop modular code without using
a structured approach in its design will result in code that is less understandable,
maintainable, and testable than code that constitutes a system built using a struc-
tured design discipline [10].

A "module" is defined simply as one or more source code files, and a "function" is
a callable entity, which may or may not return a value. Although the Trusted Com-
puting Base (TCB) comprises all the hardware, software, and firmware responsible
for enforcing the system's security policy, the modularity requirement is not generally
applied to hardware. Applicability of the requirement to firmware is determined on a
case-by-case basis. Some of the factors considered are the amount of firmware in the
system, the reputed reliability of the firmware (i.e., whether it is widely known to be
reliable), the type of microcode (i.e., horizontal3 or vertical), and the nature of the
security functions the firmware implements.

In order to evaluate the modularity of TCB software, a collection of architectural
evidence is examined, including the software engineering process purportedly used by
the designers and developers, the system design documentation, the coding standards,
and the contracts of the individual software modules. The SAWG defined "contract"
as:

A description of the overall purpose of a module. It includes the relation-
ship between the input and output variables for all functions within that
module and, therefore, describes all of the effects of the function. The
input and output variables include not only the formal parameters of the
functions, but also all state-maintaining variables, be they global to the
system as a whole, or local to the function or module.

Evidence includes not only whether the documentation exists for each of these items,
but also whether the documented disciplines are implemented and enforced.

The SAWG identified six attributes that play major roles in achieving a modular
system. These attributes are shown in Table 1, which identifies for each attribute the

3Horizontal microprogramming is a technique whereby actions are encoded for multiple resources
in a microinstruction. Horizontal microprogramming executes faster than vertical, but requires more
complex decoding hardware. More importantly in this context, horizontal microcode is more difficult
to code and to analyze than vertical microcode, which is similar to conventional programming [2].
To date, with respect to the architecture study, horizontal microcode has been considered part of
the hardware.

45

level of abstraction at which it is examined and the acceptance criterion applied to it.
When evaluating a mo<fu/e-level attribute, acceptability is based upon the strength
of the attribute within individual modules (for code cohesion, complexity, and data
cohesion) or in the interfaces between them (for coupling). Function-level attributes
are evaluated for each function. Code-level attributes are evaluated relative to the
source code as an aggregation of statements.

Modularity assessment is a continuing process encompassing the entire design and
development process. The words of the modularity requirement are identical for
classes B2 and B3/A1; therefore, relative to the attributes examined here, evalua-
tion teams should expect to see no specific differences among these classes. However,
B3/A1 system architectures are further constrained by the added requirements for
TCB minimization, layering, abstraction, and data hiding. For B3/A1 systems, devi-
ations are acceptable only if they do not adversely affect the system's ability to meet
the modularity requirements and the additional system architecture requirements.
Experience has shown that exceptions are fewer for the higher classes than for B2,
due to the imposition of the additional constraints on the system architecture.

2 Evidence

In evaluating a system for modularity, a collection of evidence is examined and ana-
lyzed to evaluate the attributes identified in Table 1, and to ensure that the system
was designed in a disciplined fashion and that the code was developed according to
sound coding standards. Four types of evidence provide assurance that sound software
engineering practices are in place:

• Coding Standards

• Contracts

• Design Documentation

• Software Engineering Discipline

For these types of evidence:

•

•

The documentation must be clearly written (e.g., the design documentation
should enable a reader to understand the design without having to look at the
code).

The documentation must be complete (e.g., the software engineering process
should describe all processes involved in engineering the software from functional
decomposition through final testing).

46

Attribute Module Function Code Criterion

Code Cohesion X X - Functional, sequential, communicational co-
hesion acceptable

- Temporal cohesion acceptable for specified
cases

- Logical cohesion acceptable only at module
level

- Coincidental cohesion unacceptable

Complexity X - Acceptable if module size and comprehen-
sion time within specified limits

Coupling X - Call coupling acceptable

- Common coupling as determined by analysis

- Content coupling unacceptable

Data Cohesion X xo - Must exhibit at least logical data cohesion

Duplicate
Code and Data

X - No duplicate code or data

Extraneous
Code and Data

X - No extraneous code or data

"Note that Data Cohesion is actually evaluated at the "data structure" level rather than the
'function" level.

Table 1: Attributes, Abstraction Levels, and Acceptance Criteria

47

• The documentation must be internally consistent (e.g., functional contracts
must have a consistent format, design documentation must describe interfaces
consistently).

• The discipline described in the documentation must be enforced (e.g., the code
must represent consistent and correct application of the coding standards).

• The contracts must be consistent with the design documentation and the coding
standards must be consistent with the software engineering discipline.

3 Modularity Attributes

The strength of the following six attributes are indicative of modularity and overall
software quality:

• Code Cohesion

• Complexity

• Coupling

• Data Cohesion

• Duplicate Code and Data

• Extraneous Code and Data

Each of these attributes makes a unique contribution to the modularity of the system.
Furthermore, a dependency exists among these attributes relative to the role they play
in achieving a modular system. A basic goal of modularity as a software-engineering
discipline is the minimization of complexity. A well-designed, simply constructed
system is more easily understood than a system whose design and implementation are
complex. Data and code cohesion and minimal coupling among modules contribute
toward the goal of controlling complexity. Similarly, ensuring that no duplicate or
extraneous code or data exist in the system helps to minimize complexity and to
facilitate understanding.

3.1 Code Cohesion

Code cohesion is a measure of the strength of relationship between the activities
performed by a software entity. Stevens [7] defined six categories of cohesion:

48

1. A module/function has functional cohesion if it performs activities related to a
single purpose. Typically, a functionally cohesive module/function will trans-
form a single type of input into a single type of output, will either work on
only one type of variable or will move data from one type of variable to an-
other. Examples of functionally cohesive modules are a stack manager and a
queue manager. Examples of functionally cohesive functions are mathematical
functions, an access check, and a dominance check.

• Functional cohesion is the highest and most desirable form of cohesion.

2. A module/function has sequential cohesion if the output from each one of its
functions/elements is input for the next function/element. An example of a
sequentially cohesive module is one that contains the functions to write audit
records and to maintain a running count of the accumulated number of audit
violations of a specified type. An example of a sequentially cohesive function is
one that transforms a label from an external form to an internal form, and then
associates that label with an object (e.g., places it in the correct inode).

• Sequential cohesion is a high form of cohesion.

3. A module/function has communicational cohesion if the functions/elements
within it produce output for other function(s)/element(s) within it or use the
output from other function(s)/element(s) within it. An example of a commu-
nicationally cohesive module is an access-check module that has the following
functions: check the mandatory access, check the discretionary access, and grant
access. An example of a communicationally cohesive function is a mandatory ac-
cess check function that performs the secrecy access check and grants or refuses
access based on the result.

• Communicational cohesion is a moderate form of cohesion.

4. A module/function has temporal cohesion if the activities it performs need to be
executed around the same time. It may have to operate on multiple types of in-
put variables and/or may produce multiple types of output variables. Examples
of temporally cohesive modules include initialization, recovery, and shutdown.
An example of a temporally cohesive function is one that initializes a heteroge-
neous set of data structures.

• Temporal cohesion is a low form of cohesion.

5. A module/function has logical (procedural) cohesion if it performs similar activ-
ities on different data structures. For a module, logical cohesion is present if the
different functions are performing similar activities on different data types. For
a function, logical cohesion is present if the elements are related only through
common enclosing control structures such as if... then ... else. An example of

49

a logically cohesive module is one where each function builds the integrity check
information for a different object type (e.g., segment, file, device, page). An
example of a logically cohesive function is one that manipulates different types
of queues.

• Logical (Procedural) cohesion is a low form of cohesion.

6. A module/function has coincidental cohesion if it performs unrelated, or loosely
related activities. If a module/function does not fall in any of the other cohesion
categories, it has coincidental cohesion.

• Coincidental cohesion is the lowest and least desirable form of cohesion.

Cohesion is an important software attribute in terms of understandability and main-
tainability. Code cohesion contributes to ease of understanding in that highly cohesive
code performs a well-defined set of activities. Furthermore, localization of activities
contributes to ease of maintenance.

Functional, sequential, and communicational cohesion are acceptable forms of cohe-
sion. Coincidental cohesion is unacceptable. Temporal cohesion also is unacceptable
except for the initialization code, recovery code, and shutdown code. Logical (proce-
dural) cohesion is unacceptable at the function level, but acceptable at the module
level.

3.2 Complexity

Complexity is a measure of how difficult a computer program is to understand (and
thus to analyze and maintain). Minimizing complexity is the ultimate goal of a
programming team's attempts to develop a system having good modularity charac-
teristics. Controlling coupling and cohesion in the system contributes significantly to
this goal.

Ever since Dijkstra [3] brought attention to the importance of clarity and elegance in
programs (and "invented" structured programming), much attention has been focused
on the advantages of structuring programs and data, of using high-level languages, of
reflecting a program's structure in its written form (using spacing and indentation),
and of top-down design. In spite of this attention, programmers still can produce
programs that are difficult to analyze for correctness. Such programs, though writ-
ten in a language that permits (or even encourages) well-structured programs to be
produced, may be needlessly complex: they may communicate with other programs
through side efFects on global variables (a problem more of functional decomposition
than of coding); they may contain portions that could be eliminated or combined
with other portions if different algorithms or data structures were used; they may

50

contain unfamiliar expressions or constructions; or countless other factors may con-
tribute to complexity. If the resulting complexity is too great, adequate assurance
that the program is correct cannot be obtained.

A great deal of effort in the software engineering field has been expended in attempting
to develop metrics to measure the complexity of source code. Most of these metrics
use easily computed properties of the source code, such as the number of operators
and operands, the complexity of the control flow graph, the number of parameters
and global variables, and the number of levels and manner of interconnection of the
call graph. [4] Some of these metrics have been used as the bases for commercial
automated tools designed to measure complexity. The SAWG conducted a search for
automated tools that might be useful in assessing the code complexity. Unfortunately,
no tools capable of assessing the complexity of the kind of code generally found in
the operating systems were identified.

The complexity of a system ultimately determines its understandability, maintain-
ability, and testability. If the system is overly complex and difficult to understand, it
will not provide the desired assurance that it works properly and securely.

Yourdon and Constantine [10] recognized several factors that affect the complexity of
a computer program:

• The amount of information that must be understood correctly;

• The accessibility of the information; and

• The structure of the information.

In the absence of suitable automated tools for measuring complexity, the SAWG
recommended a straight-forward (manual) analysis technique for measuring these
complexity indicators: the size of modules and the time required to understand them.
In other words, each module must fall within fairly specific size constraints (relative to
numbers of statements), and the contract, design, and code must be comprehensible
within the specified time periods.

3.3 Coupling

One must understand the interdependencies between the modules of a system in order
to fully understand how the system works. Coupling is a term that encompasses how
modules interact and how strong the dependencies are. Types of coupling include [5]:

• Call Coupling - Two modules are call coupled if they communicate strictly
through the use of function calls. Examples of different types of call coupling
are:

51

— Data Coupling — Two modules are data coupled if they communicate
strictly through the use of call parameters that represent single data items.

— Stamp Coupling — Two modules are stamp coupled if they communicate
through the use of call parameters which comprise multiple fields or have
meaningful internal structure.

— Control Coupling — Two modules are control coupled if one passes in-
formation which is intended to control the internal logic of the other.

• Common Coupling — Two modules are common coupled if they share a com-
mon system resource (e.g., variable).

• Content Coupling - Two modules are content coupled if one refers to the
internals of the other in any way (e.g., modifying code of or referencing labels
internal to another module).

Since modules are coupled to each other largely4 through the actions taken through
functions, the analysis must focus on functions and how they are coupled. Once
the functions of the system have been examined, any instances of coupling that are
intra-module can be exempted from further analysis, since the ultimate target of
this analysis is inter-module coupling. Further, this analysis is not concerned with
the precise strength of inter-module coupling, but rather focuses on making a binary
choice. Hence, the result will be "acceptable" or "unacceptable."

Since the system architecture requirement of the TCSEC states that modules must be
"... largely independent ...," coupling must be kept reasonably small. Some of the
underlying reasons for this requirement are: largely independent modules are easier
to understand and maintain (i.e., less complex); their use will cause fewer unintended
side effects on other modules if something were to go wrong; and other assurance-
determining efforts (such as penetration testing) may become more tractable.

Call coupling is always acceptable, and content coupling is always unacceptable.
Common coupling is either acceptable or unacceptable, depending upon the out-
come resulting from the application of the analysis method defined by the SAWG.
The method involves ensuring that the scope of each variable is appropriate and ana-
lyzing the global variables. If a global variable is modified within a single module, but
referenced by multiple modules, unacceptable common coupling is present. If a global
variable is modified in a single function, the team must decide upon acceptability.

4It can be argued that modules sharing definitions, such as data structure definitions, are coupled.
However, for the purposes of the analysis shared definitions are considered acceptable, though subject
to the data cohesion analysis.

52

3.4 Data Cohesion

Statements that define data (such as data structure definitions, type declarations,
variables and constants) must be analyzed in terms of data cohesion. Data cohesion
refers to the strength of the relationship between a group of collocated statements
that define data. Data cohesion applies to the module level and data-structure level.

Some of the terms defined in the section on code cohesion (see section 3.1) can be
applied in this discussion to refer to types of data cohesion. Most types of data
cohesion found will likely be categorized as coincidental (unrelated, or loosely related),
logical (related in a logical sense) or functional (all contribute to a single goal; all are
manipulated together).

A cohesion analysis of the data-defining statements within a system may be just
as important as a cohesion analysis of the executable code. Both forms of analysis
contribute toward the goals of understandability, maintainability, and testability. In
addition, attention to data cohesion in the design of data structures encourages mod-
ule independence. For example, data-defining statements may contain portions that
are highly cohesive and therefore likely to be referenced from a single module, or from
only a few, reducing coupling. An understanding of the major data structures should
increase the understandability.

Data definitions must exhibit at least logical data cohesion. For example, the elements
of a data structure or a group of data-defining statements packaged together should at
least be logically related. Coincidental data cohesion is unacceptable, and functional
data cohesion is preferred.

3.5 Duplicate Code and Data

The term duplicate code refers both to multiple instances of identical code and to
multiple instances of code sequences that perform the same operation. The term
duplicate data refers to multiple definitions of data structures that are (or could be)
used interchangeably. Duplication can occur anywhere within the system; i.e., it is
not limited to single functions or modules.

In some cases, code (or data) can be considered nearly duplicate. For example, two
functions may be different only in that they perform an operation on different files.
These functions may be replaced by a single function that accepts the filename as an
argument, removing the duplication.

Duplicate code and data impose an unnecessary burden on system developers and
maintainers, who must ensure consistency of all duplicate code and data in the system.
Duplication can also increase the time required to understand the system. Efforts

53

should be made to eliminate duplicate code and data.

No duplicate code or data is acceptable.

3.6 Extraneous Code and Data

The term extraneous code refers to code in the system that serves no useful purpose
in the evaluated product and, therefore, can be removed without affecting contract
adherence. The determination of code necessity is performed at the code level. For
example, functions that are never invoked, code that is circumvented by the execution
logic, functions which simply return when called (and their associated calls), and
segments of code that cause no effective state change in the system are all deemed
extraneous.

Similarly, extraneous data refers to data structures, type definitions, etc. which can
be removed without affecting a code's adherence to its contract.

Extraneous code and data hamper understanding of the system by serving as a dis-
traction when attempting to analyze it. Extraneous code is also a problem in that
maintenance or enhancements may invoke code which had been circumvented and,
therefore, had gone unanalyzed and untested.

No extraneous code or data is acceptable.

4 Analysis

In order to meet the modularity criterion, each of these modularity attributes must
be analyzed. The SAWG report [8] provides an analysis approach and acceptance
criterion for each attribute. For example, the approach for analyzing code cohe-
sion involves the development of a processing element flow graph [6]. In the case of
coupling, the analysis involves two procedures: one (for content coupling) that is per-
formed on all code analyzed and the other (for common coupling) that is performed
only when other modularity attributes have identified a related problem area.

The modularity assessment is conducted during an architecture study involving sev-
eral analyses: a preliminary design analysis, a preliminary code study, and a full code
study. The purpose of the architecture study is to evaluate the design and implemen-
tation relative to the system architecture requirement; it is not to provide specific
solutions or advice to the developers or to identify every instance of a discrepancy.
The preliminary design analysis is conducted during the Vendor Assistance Phase of
the Trusted Product Evaluation Program (TPEP) [9] and its purpose is to collect
and examine evidence of the vendor's ability to produce the items required for the

54

preliminary code study.

The preliminary code study is conducted as early as possible in TPEP, during either
the Vendor Assistance Phase or the Design Analysis Phase. Its objective is to gain
assurance that the final product will meet the modularity requirements. The assump-
tion is that if the vendor appears at this point to understand the implications of the
modularity requirements relative to both design and implementation, and if the code
developers are adhering to the coding standards, the final product will be "modular."
The full code study is conducted as early as possible during the Formal Evaluation
Phase of TPEP and is the activity that ultimately determines whether the system
meets the modularity requirement.

The methodology developed by the SAWG has been used by a few teams in conducting
their architecture studies of products under evaluation for class B2 ratings. Feedback
from these teams was used in refining this process. As the methodology is applied to
more evaluations, it will be further refined and revised.

5 Summary

Meeting the modularity criterion of the System Architecture requirement is critical to
obtaining a class B2 rating. The SAWG report identifies six attributes as important
in meeting this criterion, provides a methodology for evaluating these attributes, and
discusses the evidence required to support the assessment.

Acknowledgments
The authors wish to thank Steven LaFountain, Patricia Moreno, Joseph Bulger, and
Mario Tinto for their contributions to the development of this paper.

References

[1] Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, December 1985.

[2] Baer, J-L. Computer Systems Architecture, Computer Science Press, 1980.

[3] Dijkstra, E.W., "Programming Considered as a Human Activity," Proceedings
of the 1965 IFIP Congress, 1965, pp. 213-217.

[4] Fairley, R., Software Engineering Concepts, McGraw-Hill, Inc., 1985.

55

[5] Martin, J. and C. McClure, Structured Techniques for Computing, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1985.

[6] Ott, Linda M. and Jeffrey J. Thuss, "The Relationship between Slices and Mod-
ule Cohesion", Software Engineering, Proceedings of the Eleventh International
Conference, Pittsburgh, PA, May 15-18, 1989, pp. 198-204.

[7] Stevens, W. P., Using Structured Design, John Wiley and Sons, 1981.

[8] Trusted Computer System Architecture: Assessing Modularity, National Security
Agency, Ft. George G. Meade, MD, in press.

[9] Trusted Product Evaluations: A Guide for Vendors, National Computer Security
Center, NCSC-TG-002, 22 June 1990.

[10] Yourdon E. and L. L. Constantine, Structured Design: Fundamentals of a Dis-
cipline of Computer Program and Systems Design, Prentice-Hall, Inc., 1979.

56

COMPANION DOCUMENT SERIES TO THE
TRUSTED DATABASE MANAGEMENT SYSTEM INTERPRETATION1

LouAnna Notargiacomo
Victoria Ashby

Vinti Doshi
Jarellann Filsinger

Sushil Jajodia2

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

Lieutenant Colonel Ron Ross, USA

National Computer Security Center
9800 Savage Road

Fort George G. Meade, MD 20755

In fiscal year 1990, The MITRE Corporation was tasked by the National Computer Security Center
(NCSC) to begin the development of a series of companion documents to the Trusted Database
Management System Interpretation (TDI) of the Trusted Computer System Evaluation Criteria.
During fiscal years 1990 and 1991, four TDI companion documents were developed discussing
inference, aggregation, referential integrity, and auditing. This fiscal year, two additional
documents are under development dealing with the topics of high-assurance discretionary access
control (DAC) and polyinstantiation. This paper presents an overview of these companion
documents.

Background

The Trusted Database Management System (DBMS) Interpretation (TDI) of the Trusted Computer
System Evaluation Criteria (TCSEC) [1], published by the National Computer Security Center
(NCSC), provides evaluation guidance for trusted systems that are composed of parts. An
example of such a system is a trusted DBMS that runs on a trusted operating system. While the
title of this document refers specifically to DBMSs, a conscious decision was made by the NCSC
to deal with only the aspects of trusted DBMS evaluation that apply to all trusted applications
designed to run on a trusted operating system. Therefore, the TDI does not deal with many
DBMS-unique issues. This decision was made for two reasons. The first reason was the desire to
have this interpretation apply to a wide range of trusted applications. The second reason was that,
in the extensive discussions of DBMS-specific issues that arose during the TDI's development, it
became obvious that many of the issues were still open research topics. As a result, it was decided
that it would be inappropriate to define evaluation guidance in a technology area that was

l Sponsorship of this work is by the National Computer Security Center under contract DAAB07-91-C-N751.

2 Also affiliated with the Center for Secure Information Systems and the Department of Information and Software
Systems Engineering, George Mason University, Fairfax, VA 22030-4444.

57

undergoing rapid change. Applying such guidance would both stifle research innovation and run
the risk of endorsing an unproven approach.

Nevertheless, since trusted DBMS evaluations were expected to begin when the TDI was
published, it was recognized that information on DBMS-specific trust issues still needed to be
disseminated to the security community at large. Therefore, the decision was made to develop a
series of companion documents to the TDI covering DBMS-specific issues.

MITRE's Role

In fiscal year 1990, MITRE was tasked by the NCSC to begin the development of the TDI
companion document series. The development plan for these documents is that for each topic area,
MITRE will develop a draft document to be reviewed first by the Government and then released for
public review. Comments from these reviews will be incorporated into the documents before final
NCSC approval and publication.

Each TDI companion document is devoted to a particular DBMS-specific research area. These
documents discuss the research problem, present an overview of relevant research and
development work, in some cases include additional problem analyses, present any appropriate
conclusions drawn from the analyses, and summarize any additional work needed to resolve the
problem. These documents are intended to be published as Technical Reports. Rather than serve
as evaluation guidance, they will instead serve to disseminate information on the current state of the
art for each topic. In contrast to evaluation guidance, which represents a consensus position, these
Technical Reports deal with evolving technology, and thus some controversy over their content is
expected.

During fiscal years 1990 and 1991, four TDI companion documents were developed on the
following topics: inference, aggregation, referential integrity, and auditing. Draft versions of the
inference, aggregation, and referential integrity documents have been delivered to the Government
for review and should be available soon for external peer review. A draft of the audit companion
document is near completion for delivery to the Government. This fiscal year, two additional
documents are under development dealing with the topics of high assurance discretionary access
control (DAC) and polyinstantiation.

Overview of the TDI Comnanion Documents

The purpose of this paper is to present an overview of the technical content of the companion
documents that MITRE has developed to date and a brief discussion those documents currently
under development. For each companion document, the problem being addressed is described, an
overview of the document content is given, and any conclusions are summarized.

Inference Companion Document: Inference Problems in Multilevel Secure
Database Management Systems

Using a DBMS, users can draw inferences from the information they obtain from a database. The
inference could be derived purely from data obtained by querying the DBMS, or it could
additionally depend on some prior knowledge obtained from outside the database system. An
inference becomes a problem when more highly classified information that the user is not
authorized to access can be inferred from less classified information.

Many difficulties are associated with determining when more highly classified information can be
inferred from less classified information. The biggest problem is that it is impossible to determine

58

precisely what a user "knows." The problem is at least manageable if the closed-world assumption
can be adopted. Under the closed-world assumption, if information Y can be derived using
information X, then both X and Y are contained in the database. By ruling out inferences that lie
outside the database, the closed-world assumption provides a structured framework within which
inference problems can be studied [2].

The scope of the inference problem, as addressed in the inference companion document [3], is
limited in several ways. To stay in the mainstream of database security work, the report is limited
to the relational model, although other models have occasionally been addressed in research
literature [4, 5]. Also, this report omits consideration of inference control for statistical databases
since this topic has been well covered elsewhere.

Inference problems can be grouped into three classes. The first class consists of inferences that
can be derived from the low data retrieved from the database by a user, for example, if a user is
allowed to issue queries conditioned on data that are supposed to be invisible to the user. The
second class of inference problem involves inferences that can be derived from the low data
together with the metadata (for example, in the form of integrity or value constraints) stored in the
database. Inference problems can be caused by types of key integrity constraints, functional and
multivalued dependencies, and value constraints. The third type of inferences are those that
require, in addition to the information retrieved from the database, some external knowledge. This
external knowledge usually consists of general knowledge about the environment, knowledge of
how information is logically connected to allow an inference to be made, or an understanding of
algorithms that can be applied to the lower level retrieved data and used to compute higher level
data values.

To control unauthorized disclosures due to inference, several approaches have been proposed in
the research literature. These approaches are briefly addressed below:

• Limiting the data used to satisfy a query to data objects the user is cleared to access

• Allowing polyinstantiation by including the object's sensitivity level in its primary key

• Raising the classification of data items that may be used to infer higher level data

• Raising the classification of value constraints to the level of the data that can be inferred
using the constraint

• Using history data recorded in the audit trail to identify inferences derived over multiple
actions

• Allowing limited inferences under controlled conditions

The inference companion document concludes that although many methods have been developed
for dealing with inference problems, elimination of undesirable inferences remains very much an
intuitive process. To date, a majority of research on the inference problem has concentrated on the
database design phase and not on the identification of inferences that occur dynamically during
command execution. Application of the methods discussed for the identification and elimination of
inferences during database design can yield very good or very bad results, depending on the skill
of the database designer. Since the elimination of all inference problems is an extremely complex
task, this report provides additional guidance on the vital issues involved in the elimination
process.

59

Aggregation Companion Document: Aggregation Problems in Multilevel Secure
Database Management Systems

For the purposes of the aggregation companion document [6], the aggregation problem refers to
the direct association of data that results in a higher classification level than the session level of the
user producing the aggregate. That is, the true classification level of the aggregate is higher than
the least upper bound of any input used to create the aggregate. This definition does not reflect
inclusion of any data outside the data model, or knowledge the user may possess that is outside the
data model.

The definition of the aggregation problem is further refined to include both cardinality aggregation
and data association problems. In cardinality aggregation, the label on the data aggregate is
dependent on the number of like pieces of data. A data association problem occurs whenever two
values seen together are classified at a higher level than the classification of either value
individually. The data association problem can be differentiated from the cardinality aggregation
problem in that what makes the information sensitive is not the aggregate of the two lists, but the
exact association between the pairs of data objects.

While the policies for mandatory and discretionary access control can be implemented using
generalized mechanisms that are application independent, no such relationship between
aggregation control policies and implementation mechanisms is known. The data aggregation
problem is specific to each database and the environment in which it exists, so it cannot be
automatically handled. Aggregation relates to the semantic structure of data; aggregation control is,
therefore, data dependent and must be tailored to the data. Thus, aggregation control is a problem
inherent in the data being managed, not a problem inherent in the data management software of the
DBMS (although DBMS mechanisms can be used to control this problem).

In the aggregation companion document, a distinction is made between aggregation control
techniques that are useful in single-level (or system-high) database applications and control
methodologies useful in multilevel applications. In addition, techniques that can be used during the
database design phase are distinguished from tools intended to be used during application
execution.

In single-level database applications, the controls that have been used are for the most part
operational controls, for example, the control and review of hard copy output. Those that are not
operational divide into two groups: those used during the database design phase before the
database is operational, and those used while it is operational but only after database access has
occurred. Although research has been done on tools that detect aggregation problems as the
database access occurs, the performance impact of tools and techniques developed to date may be
too severe to allow such tools in an operational system, even when the tools prove useful.

Data aggregation can be controlled through the database design process by using the designer's
knowledge about the data and how the data can be aggregated. For example, a decision can be
made to omit data from the database that would combine with other data to form an aggregate
above the system-high level. Another database design technique for aggregation control divides
data that could aggregate into separate structures. In single-level database applications,
discretionary access controls have been applied to the separate structures, preventing their
combination by most users. For relational databases, these discretionary access controls could be
associated with predefined views. (A view is a named query statement that identifies a subset of
the database.) To make the use of views for discretionary access control effective requires
restricting queries to only those that execute against predefined views. Audit trail analyses may

60

also be used for aggregation control. Assuming sufficient data has been audited, audit trail
analyses can be automated to alert the security officer to any possible aggregation problem.

For multilevel databases, the aggregation companion document covers both pragmatic control
approaches and a range of proposed approaches in database security research. The pragmatic
control strategy discussed deals with data aggregation control in a database implemented by an
MLS DBMS, in which both predefined and ad hoc queries are allowed. With this approach, the
appropriate label for predefined, standard queries is defined and set. All ad hoc queries, however,
are labeled at the system-high level, independent of the user's session level. In addition to query
restriction, the other control strategies presented for single-level databases have also been
suggested for multilevel databases implemented using an MLS DBMS. However, all are
restrictive.

The aggregation companion document then reviews several approaches that have been pursued in
DBMS security research for multilevel databases. The SeaViews project uses the concepts of
classification constraints and aggregation constraints [2]. However, according to a more recent
paper on the SeaViews project [7], results show that a proper combination of database design and
access controls will control many instances. In [8], the Brewer-Nash Chinese Wall model is
extended to address aspects of the data aggregation problem. With this model, datasets are
grouped into "conflict of interest classes" and by mandatory ruling all subjects are allowed to
access, at most, one dataset belonging to each such conflict of interest class. Based on this model,
Meadows derived a lattice-based information flow policy that allows the construction of a system
which prevents users from accessing aggregates they should not be able to see. The ASD-Views
project uses an approach in which data accesses are constrained to go through relational views.
Associated with each view definition is a label that reflects the level of the aggregate response [9,
10]. In the Lock Data Views (LDV) project, the basic security policy is extended to incorporate
name-dependent, content-dependent, and context-dependent classification policies, as well as
inference control [11, 12, 13]. With this approach, aggregation constraints are defined and then
enforced after the query results have been built. Finally, in [14] a security algebra is defined that
can be used to identify the intersection between sets of items that when combined result in a higher
level aggregate. The data items at the intersection are then labeled at the aggregate level.

The aggregation companion document concludes that to handle data aggregation, the DBMS must
supply mechanisms, or tools, for data aggregation control. However, no one mechanism currently
exists that will completely solve the data aggregation control problem, even when restricted to
information contained in the database. Instead, a group of tools exists that can be considered for
use in each specific environment dependent on individual applications. These mechanisms by
themselves, are not sufficient for aggregation control; how the mechanisms are used is most
important.

Entity and Referential Integrity Document: Entity (tntf Referential Integrity in
Multilevel Secure Database Management Systems

The Entity and Referential Integrity companion document [15] focuses on the problems associated
with the enforcement of the relational entity and referential integrity constraints defined in the
current American National Standards Institute (ANSI) standard for the SQL2 language (the current
standard for the relational database data manipulation and data definition language) [16], when
applied to a multilevel database. These SQL2 features are designed to allow rules to be defined
that, when enforced, ensure that the relationships between data objects are not invalidated as a
result of data insertion or modification. In a multilevel database, these relationships potentially
exist between objects at different sensitivity levels. Development of a relational DBMS that meets
these SQL2 requirements would include features to update related data objects automatically,

61

maintain database integrity, or prevent an update that might result in a database integrity violation.
Unfortunately, enforcing referential integrity rules between objects at different sensitivity levels
may permit the signaling of information between users operating at different sensitivity levels. The
objectives of the entity and referential integrity companion document are to analyze the ways of
enforcing referential integrity controls in MLS DBMSs, and to identify those referential integrity
rules that can be enforced without compromising secrecy.

The entity and referential integrity companion document first defines these forms of integrity with
respect to single-level DBMSs and describes various concepts related to referential integrity. It
then defines the basic concepts of entity and referential integrity with respect to multilevel database
relations and gives a detailed analysis of referential integrity in the multilevel context. The analysis
considers different instances of the relationship between the access class of the foreign key and the
access class of the referenced primary key, both under different levels of granularity of the labeled
objects and with or without polyinstantiation.

The extension of the concepts of referential integrity from single-level relations to multilevel
relations is not straightforward. This complexity arises because restrictions are needed to provide
referential integrity control in MLS DBMSs without compromising secrecy. The basic requirement
for referential integrity is that each referencing foreign key value must have an identical target
primary key value in the referenced relation. An additional requirement for multilevel relations is
that the foreign key and the primary key should be uniformly classified (i.e., all attributes included
in the key should have the same access class).

The entity and referential integrity companion document concludes that enforcing referential
integrity when the access class of the foreign key is equal to the access class of the referenced
primary key is simple and without any ambiguity. All integrity rules apply in this case, whether or
not the relations allow polyinstantiation. In fact, when polyinstantiation is allowed, the access
class of the primary and foreign key values must be included as part of the key to disambiguate
references and allow the referential integrity rules to be enforced. In the second case, however,
when the access class of the foreign key does not dominate the access class of the primary key,
referential integrity completely fails. In the final case in which the access class of die foreign key
dominates the access class of the referenced primary key, some of the integrity rules apply when
the action is to be taken on deletion or modification of a key value. The exact action differs
dependent on the granularity of the labeled data object. The entity and referential integrity
companion document concludes with a table that enumerates the various cases and the conditions
under which they can be applied.

Auditing Companion Document; Auditing in Multilevel Secure Database
Management Systems

The auditing companion document discusses auditing in Trusted DBMSs (TDBMSs). First, the
objective of auditing is reviewed as it applies to trusted data management. The characteristics of
auditing in a TDBMS and a trusted operating system are compared. The primary differences
between the two stem from the variety and complexity of DBMS object structures and the methods
used to manipulate them. Unlike operating system objects, TDBMS objects and their metadata
have semantic interrelationships that are the basis for data manipulation. An examination of the
TDBMS object structure and database semantics is undertaken to help define the scope of TDBMS
auditing.

Another difference between DBMS and operating system auditing concerns the need to audit
actions that impact data integrity. Although the TCSEC is concerned with integrity when it directly

62

affects the system's ability to maintain confidentiality (i.e., integrity of the Trusted Computing
Base and sensitivity labels), it does not discuss auditing of actions that might impinge on the
integrity of application data. However, an important characteristic of a TDBMS is its support for
preserving the integrity of the data it manages. This report recommends extending the scope of
auditing for TDBMSs to support this essential capability.

The types of operations that can be carried out on TDBMS objects and metadata are examined to
provide examples of actions to be audited. The SQL2 language provides a framework in which to
analyze the audit implications on the different types of database objects and the actions that can be
performed on these objects. An appendix lists specific recommendations for the types of
information that should be audited when executing each of the basic types of SQL2 statements.
Additionally, the need is recognized for auditing of system-level TDBMS actions, such as database
utilities and concurrency control. Finally, a number of remaining open issues and research areas
related to TDBMS audit are identified.

Polvinstantiation Companion Document: Poly instantiation in Multilevel Secure
Database Management Systems

Work on the development of a TDI companion document on polyinstantiation began in fiscal year
1992. This document will first present an overview of the basic security problems in multilevel
databases caused by entity and key integrity and describe methods for applying polyinstantiation to
resolve these problems. Next, the problems with data integrity that are caused by polyinstantiation
will be discussed and examples using different object granularities will be presented. The
document will provide a survey of the various approaches being used by MLS DBMS vendors,
followed by an overview of the approaches being proposed in the research literature. Finally, the
problems that still need resolution will be identified.

High Assurance Discretionary Access Control Companion Document: High
Assurance Discretionary Access Control in Multilevel Secure Database
Management Systems

The scope of the high assurance discretionary access control (DAC) companion document is to
analyze the technical problems limiting the evaluation of view-based DAC capabilities at higher
than the B1 evaluation level. The two main areas that will be addressed in this document are the
increase in TCB size and complexity when the view-based DAC approach is used, and the
problems involved with developing and proving a formal model of view-based DAC, including a
discussion of the DAC Trojan horse problem.

Summary

The TDI companion document series supports the dissemination of information concerning
database security areas pertinent to the development of MLS DBMS products, the evaluation of
application requirements, the analysis of product capabilities, and the evaluation of trusted DBMS
products. The release of the Inference, Aggregation, and Referential Integrity documents for peer
review is intended to occur shortly, followed by the release of the other documents as they are
completed. The availability of this information will further encourage technical discussion,
research, and technology advances to address these critical and difficult problems.

63

References

1. Department of Defense, Trusted Database Management System Interpretation of the Trusted
Computer System Evaluation Criteria, National Computer Security Center, NCSC-TG-
021, Version 1, April 1991.

2. Denning, Dorothy E., "A Preliminary Note on the Inference Problem in Multilevel
Database Management Systems," Proceedings of the National Computer Security
Conference Invitational Workshop on Database Security, Ft. Meade, MD, June 1986.

3. Jajodia, Sushil, Inference Problems in Multilevel Secure Database Management Systems,
DRAFT, The MITRE Corporation, McLean, VA, June 1992.

4. Berson, Thomas A., and Teresa F.Lunt, "Multilevel Security for Knowledge Systems,"
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, April 1987.

5. Patkau, Burton H., and David L. Nennenhouse, "The Implementation of Secure Entity-
Relationship Databases," Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, April 1985.

6. Ashby, Victoria, Aggregation Problems in Multilevel Secure Database Management
Systems, DRAFT, The MITRE Corporation, McLean, VA, June 1992.

7. Lunt, Teresa F., "Aggregation and Inference: Facts and Fallacies," Proceedings of the
IEEE Symposium on Research in Security and Privacy, Oakland, CA, May 1989.

8. Meadows, Catherine, "Aggregation Problems: A Position Paper," Proceedings of the 3rd
RADC Workshop, 1990.

9. Hinke, Thomas H., "Inference and Aggregation Detection in Database Management
Systems," Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA,
April 1988.

10. Wilson, Jackson, "Views as the Security Objects in a Multilevel Secure Relational Database
Management System," Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, April 1988.

11. Haigh, J. T., R. C. O'Brien, P. D. Stachour, and D. L. Toups, "The LDV Approach to
Database Security," Database Security: Status and Prospects, Proceedings of the IFIP
Working Group 11.3 on Database Security, North-Holland, September 1989.

12. Haigh, J. T., R. C. O'Brien, P. D. Stachour, D. L. Toups, and B. M. Thuraisingham,
Secure Distributed Data Views: Final Technical Report for a Database Management System,
Volume 6: Deficiencies Analysis, Honeywell Systems and Research Center, May 1989.

13. Stachour, P.D., and B. M. Thuraisingham , "Design of LDV: A Multilevel Secure
Relational Database Management System," IEEE Transactions on Data and Knowledge
Engineering, Vol. 2, No. 2, June 1990.

14. Lin, T. Y., "Commutative Algebra and Aggregation," Proceedings of the 2nd RADC
Database Security Workshop, 1989.

64

15. Doshi, Vinti, and Sushil Jajodia, Entity and Referential Integrity in Multilevel Secure
Database Management Systems, DRAFT, The MITRE Corporation, McLean, VA, June
1992.

16. American National Standards Institute (ANSI), (ISO/ANSI working draft) Database
Language SQL2, J. Melton, editor, ANSI X3H2-90-309, August, 1990.

65

COMPUTER SECURITY
and

TOTAL QUALITY MANAGEMENT

Major Gregory B. White, USAF Academy, CO
Mr. Lee Sutterfield, AFCSC/SRO, San Antonio, TX

Mr. Chuck Arvin, CTA, Colorado Springs, CO

ABSTRACT

In recent years, a number of articles and books have been written on the importance
of guality in the manufacturing of a product. In fact, the federal government has
recently launched its own guality program known as Total Quality Management and
published a series of booklets under the title of the Federal Total Quality
Management Handbook outlining the program. While at first it may seem that the idea
of infusing guality into any product or process is a simple matter, it has in fact
been shown to be very difficult. How this new push for guality affects, and is
affected by, security is the subject of this paper.

INTRODUCTION

The implementation of effective computer security policy and procedures in the
field has always been difficult. The practical concerns of computer system
administrators and users for daily production usually places security concerns
as a low priority. The result is often a poor security posture despite extensive
education and awareness programs and easy availability of a growing set of effective
security products and tools. The field is not lacking in security policies and
procedures yet security officers still find it difficult to get the many users of
their systems to follow the established security practices. What then can be done to
bring about a sound security posture? The premise of this paper is that what is
lacking is a clearly defined process for security and a means of continually refining
that process for the better. The answer to the computer security problem lies not in
technology or even clear policy. The answer lies in the use of Statistical Process
Control (SPC) and Total Quality Management (TQM).

This paper will focus on the application of Total Quality Management to computer
security. Currently the most recognized application of TQM and SPC has been within
the manufacturing environment, usually as part of the approach to management known as
Total Quality Control. In these traditional applications, SPC has been applied to
what can be termed as "wholly owned environments" where organizational structures
fall under a common authority. More often in computer security the responsibility
for security has been delegated to an office which falls outside of the traditional
organizational line of authority making it hard for the security officers to exert
any real influence at all. With the introduction of SPC and TQM into the workplace,
many of the obstacles now faced can be either reduced or eliminated.

COMPUTER SECURITY AS A PROCESS

The theory behind Total Quality Management has its roots in the work of several
individuals, the most notable of which is Dr. W. Edwards Deming. Dr. Deming has been

66

credited with the revitalization of the Japanese industry after World War II. His
ideas, which are considered by some to be unorthodox, in turn find their roots in the
work of earlier statisticians and are based on the control of a process through
statistical monitoring methods. He believes that guality doesn't cost, it pays and
can be obtained by the application of statistical control methods to each step of a
manufacturing process. This differs from traditional guality control methods in this
country which have been historically applied at the point a finished product comes
off of the assembly line. The problem with the latter approach is that the defective
item rejected at the end of the line may be the result of a problem early on in the
manufacturing process. Everything done to it along the line was a waste of time
since every step was working with a defective item. Had the quality of the product
been monitored at all steps of the process the defective item would have been
detected and rejected early on and subsequent steps would not have needlessly been
accomplished. Additionally, the monitoring of the entire process also has the
advantage of allowing a company to identify certain steps that may be causing an
inordinate number of defective products and allow management to take steps to fix
these problems. While this is a tremendous simplification of the methods taught by
Dr. Deming, it should provide the basis from which the application of TQM to computer
security can be discussed.

The traditional sequence for the manufacturing of a product followed three basic
steps. These steps, as illustrated in figure 1., were: 1) Design the product, 2)
Make it, and 3) Try to sell the product.

This process is described both by Dr. Deming [1] as well as others, such as Mary
Walton [4], in books written about Dr. Deming's methods.

\l3n 1 sfsn >»[3n -v

- > >
Design -.: t/iam :': Try to sell ii

Figure 1.

Dr. Deming, following the works of an earlier statistician, Walter A. Shewhart,
proposes a change in this traditional process flow to provide feedback and make the
process flow more responsive to the needs of the customer [1]. This new way of
"doing business" is referred to as the Shewhart Cycle and consists of the four steps
as shown in figure 2.

There are two notable changes to the process from that depicted in figure 1. The
first change is in the second step. Now, instead of just producing the product, this
step also includes a testing of the product. The other change is in the addition of
a fourth step which is designed to determine the acceptance of the product by the
consumers and to provide feedback to the design process for the next generation of
the product. A more subtle difference is in the acceptance that any product is
affected by previous designs and products. In fact, every product is affected by a
myriad of intermediate steps in the process. When we view every step of a larger
manufacturing process as an individual process itself, it is interesting to note that
SPC can be applied to each of these steps individually. This last fact is crucial to
understanding how SPC can help improve an organization's security posture.

67

The Shewhart Cvcle

step 1

steo 4

S;gJ C

Step 1: Design the product
stec 2: Prccuce it. test it curing

prccucticn
s;eo 3: MarKet it
step 4: Receive reec'cack ;rom the

users/ccnsumers

Figure 2.

Another subtle difference in these two approaches occurs in the fourth step. This
step, where the feedback takes place, is crucial because it acknowledges that the
user is important (in fact the most important person). The user's needs/desires are
what should drive the design of the product. In essence, we are asking "What is it
that the user needs and what is it that our product is delivering?" While this may
seem to be the most logical and obvious way to approach business, it has not been the
way manufacturing and industry have approached business in this country. Instead, a
product is developed and the company then proceeds to try and convince the consumers
that it is something they can't live without.

In his book, Out of the Crisis [1], Dr. Deming split companies into two broad
categories: manufacturing and service. In other words, any company is providing one
of two things; a tangible product to be sold or a service to be rendered. Computer
security falls under the second category as a service to be provided to an
organization. Accepting this and the idea that any portion of a process can be
broken down into smaller sub-processes, leads to the question "What does the computer
security process entail?" In the past, computer security followed a three step
process similar to the one found in figure 1. In this case the steps revolved around
the security regulations or directives that individuals were required to follow.
This traditional computer security process is depicted in figure 3.

Seed

Writs the rej

Seep 2

Deliver it and
mandate comvi:ance

5tei5 3

Inspect to :nsv.rs
comviiance

Figure 3.

Just like the three step process used in manufacturing found in figure 1, by
handling computer security in this manner we are setting our "workers" up to fail for
a number of reasons to be detailed in the next section of this paper.

68

This process, like the earlier one for manufacturing, has to be changed to bring into
the process the comments of those who are in the best position to detect any flaws in
the existing process. This new process, as depicted in figure 4, is modelled after
the Shewhart Cycle.

s;=2 -

s;eo

step 1. Write the reg and develop tools
step 2. Deliver the regs and the tools to

implement them
step 3. Market the service
step 4. Monitor effectiveness of regs and

tools and obtain feedback

s:eo 2

Figure 4

In this new process, the goal of providing security for the information stored on a
computer is the same; it is the process of how it is done that is changed. Since it
is most likely the individuals in the field who will have the best idea about not
only how to circumvent the controls in place but also how to improve on them, they
become an integral part of the process. In addition, not only are the regulations
provided to the individuals in the field but also a series of tools that will help
them implement them. These tools in turn are subject to continual updating and
revision as inputs are received from those who use them.

Feedback, as is shown, is an important part of this new process. No longer can the
security policy makers afford to operate in isolation from those who implement the
policies developed. The policy makers, however, can't afford to wait for feedback to
filter up the chain, they have to actively seek out the comments from those in the
field. Often this is the most difficult task of managers, especially as an
organization attempts to change from the traditional three step process to the
Shewhart cycle.

Another problem in security is actually defining our customer and our product.
Defining our customer as any individual who uses a computer system (i.e. "Security is
everyone's business") may make for a good poster but is not really realistic.
Instead, our customer should be any individual who has, as part of their job, direct
security responsibilities. This narrows our scope but doesn't lessen the
responsibility since we will still be concerned with delivering the tools to our
customers so they can do their job (which entails interacting with the users) . The
product, a service, is not security regulations, policy, and tools but rather good
security posture. While this at first may seem to be somewhat nebulous, it in fact
is what we are after. We are not actually concerned with whether security
regulations are produced, we are concerned with the security of our systems and the
information they process. Defining our product as good security posture provides us
with a measurable and meaningful goal and measurable characteristics. A measurable
process is essential to being able to apply statistical process control. In

69

addition, a better defined process helps to develop well defined sub-processes and
clearer lines of authority.

As an organization attempts to change from the old style to the new style, there
are a number of very basic changes that will need to be made. Dr. Deming has
developed a list of 14 points which he considers essential in changing to a process
oriented organization. These 14 points just as easily can and should be applied to
computer security.

COMPUTER SECURITY AND DEMING'S 14 POINTS

The 14 points that Dr Deming developed have been updated and modified continually
over the last 40 years as he has helped businesses in several countries restructure
the way they operate. These 14 points are the management side (TQM) of the
philosophy with statistical methods (SPC) being used to monitor the process. This
management side of the philosophy is really a mindset or commitment to total quality.
It is important to note that in order for the 14 points to work there has to be an
almost universal commitment to them from top management on down. This is emphasized
in the first of the 14 points which is:

1. Create constancy of purpose for the improvement of product and service.

This point goes right to the heart of the Deming method. In a business, whether the
object is manufacturing a product or providing a service, it results in the
acknowledgment that the customer is the most important part of the process. In
computer security, as in other service oriented organizations, what is essential is
the delivery of a quality product to keep the customer satisfied. The problem is to
get everybody working together towards this end. Security will not work if only the
few security personnel are concerned. It will only work if everyone is concerned and
is actively working toward a secure environment. This leads to the second of the 14
points.

2. Adopt the new philosophy

For this philosophy to truly work, the entire organization must acknowledge that
quality is the most important consideration. Before this approach, the norm was to
be concerned with some standard such as X units produced every day or no more than Y
defective products. The new philosophy is not concerned with numbers but rather with
the quality of the items produced. In a service organization, such as computer
security, the motivation should be that no unauthorized individual gain access to the
organizations resources in order to obtain information or disrupt services. The
emphasis in the field should not be on a blind implementation of security policies
and regulations but rather on the securing of the computers and their data. This may
mean going beyond what is required in the regulations or it may even mean doing
something else and then providing feedback on a needed change to a regulation. For
the new philosophy to work, the organization can't afford to have individuals hiding
behind regulations. The new philosophy needs individuals who are actively looking
for ways to improve the process. One way that the effectiveness of a product or
service has been checked in the past was through the widespread use of inspections
which is addressed in the next point.

70

3. Cease dependency on inspection to achieve quality

Dr Deming has stated "Inspection to improve quality is too late, ineffective,
costly. When [a] product leaves the door of a supplier, it is too late to do
anything about its quality. Quality comes not from inspection, but from improvement
of the production process." (1) Dr. Deming is saying that if we wait until the end
to check for defects it is too late, nothing can be done about it at that point.
Instead we should monitor the process to look for ways of preventing the defect from
happening. In computer security we too often rely on inspections to give feedback on
how well an organization is complying with regulations and assume that if they did
well on an inspection then their security must be good. Conversely, if they failed
the inspection then they are doing poorly. What results is either a possibly
unwarranted feeling of security or an emphasis on the area that caused the poor
inspection at the expense of others. While inspections can serve a useful purpose,
care must be exercised to insure that they don't become the main focus but rather a
tool to monitor the process.

4. End the practice of awarding business on the basis of price tag alone.

A more expensive, quality product is often times more economical in the long run
than a lower priced product. This equates to the acknowledgment in computer security
that, while security may cost, in the long run it may mean that the piece of
information that might give a competitor the edge in a contract, or cause the loss of
a pilot in combat, remains secure. There is an overhead associated with security.
It would be nice if we didn't have to spend money on a safe to store information in,
but we understand the world we live in necessitates it. We also accept the fact that
if we purchase poor quality locks we put our valuables in jeopardy. We qrow up in a
society which secures its valuables, we are trained from childhood to understand
this, but computer security is new and not well understood. It, however, is no less
important.

5. Improve constantly and forever the system of production and service.

Quality is not something that is added on later, it should be emphasized starting
in the design phase. This is not only true when building a car but also when
discussing security. It is not static either. The environment and threat changes
constantly. Security needs to be constantly evaluated to ensure that it is still
adequate. In addition, as a result of the feedback loops in the process, every new
system that is installed should be more secure than the previous one.

6. Institute training (and retraining).

Kaoru Ishikawa stated "Quality Control beqins with education and ends with
education." (2) The same can be said about security; it beqins with education and
ends with education. This is the sinqle most important point in computer security.
All too often a worker is trained by another worker. This has been shown to be
ineffective as any misconceptions or misunderstandings about the job are transferred
from the old worker to the new one. In computer security we have found another
ineffective method of training: basing our training on regulations. Our training

1) Deming, W. Edwards, Out of the Crisis, Massachusetts Institute of Technology
Center for Advanced Engineering Study, 1989, pg 28.
2) Ishikawa, Kaoru, What Is Total Quality Control? The Japanese Way, Prentice-Hall,
Inc, Englewood Cliff, NJ, 1985, pg 13.

71

should be data oriented which means not teaching regulations and directives but
teaching about our security posture and how to improve it. You can't just hand an
employee a manual or directive and expect them to fully understand what is written.
People are different. They learn differently and may interpret the same passage of
text differently. You also can't expect to give a security briefing once a year and
have anybody take it seriously. Training must be formal and fully supported in order
for it to work.

7. Adopt and institute leadership.

In this new philosophy, the supervisor has an increased importance. "A supervisor
must be more than a judge or overseer as the name implies. In this new economic age,
he must be a coach and a teacher. The prime responsibility of a supervisor must be
to develop his people so they continually improve, so they can do a better job." (3)
Management can't just supervise or monitor but should be leading the guest for
guality.

8. Drive out fear.

It is important in any process, and crucial in computer security, to drive out any
fear the workers may have. Nobody can do their best until they feel secure in their
job and environment. Fear not only impairs an individual's performance but also
causes the "padding" of figures so perceived adverse effects will not occur when the
process seems out of line. This is especially true in security which traditionally
has taken a punitive point of view. In the future, we should emphasize the
collection of data in a non-punitive roll—make security a team effort. In addition,
too much security can strangle an organization and adversely affect its output.
"Another loss from fear is inability to serve the best interests of the company
through necessity to satisfy specified rules, or the necessity to satisfy, at all
costs, a guota of production." (4) Fear changes the product from "improve the
security posture" to "produce reports and comply with regulations," a subtle but
crucial change.

9. Break down barriers between staff areas.

Simply put, this means that the lines of communication must be opened between
management, people in R&D, designers of the tools used, and the users of the product.
If there is no communication (no feedback), tools will be used which do not meet the
needs of the field. When this happens, it dooms those using them to failure since
they have "defective" tools to work with. This in turn affects their attitude toward
the job generally resulting in dissatisfaction, instead, when the tools are designed
with inputs from those who will use them, the likelihood they will be used increases
dramatically. This not only applies to tools designed to aid a security officer but
also to security as part of a larger process. Too often in computer security we
don't have a good understanding of what the overall product is of the organization
and the frontline managers don't understand how security (or lack of security) can
effect the product. Communication between the security managers and the operations
managers is essential.

3) Scherkenbach, William W., The Deminq Route to Quality and Productivity, CEEPress,
Washington D.C., 1990, pg 89.
4) Deming, Out of the Crisis, pg 61.

72

10. Eliminate slogans, exhortations, and targets for the work force.

Posters and slogans have long been used in the security arena to raise the level of
security awareness. This point refers to those posters or slogans designed to exhort
individuals to unreasonable performances when the process or system does not make
this possible. For example, don't develop posters that call for no security
incidents if the policies, regulations, and tools make it nearly impossible to escape
without some "incident". Posters that are designed to remind everybody of the
security threat and are aimed at raising security awareness are acceptable as long as
they don't do so through increased fear. In addition, any posters should be based
not on regulations, but on data collected as part of the security process.

11. Eliminate numerical quotas for the work force.

It is important to remember that establishing guotas for the sake of some reporting
purpose is not a good practice. If the goal is set to perform one security
inspection a month that is exactly what will be performed whether only one every
other month or even one every week is really needed. Setting guotas may also be
unreasonable if the tools are not provided to obtain those quotas.

12. Remove barriers that rob people of pride of workmanship.

This is really a problem of communication and tools. If supervisors listen to the
feedback of those who work for them, and act on this feedback, the organization runs
much smoother. If comments are ignored it raises an invisible, but very real,
barrier between the various levels in the organization. In addition, if comments are
ignored on how the process can be improved, the individual who saw a way to improve
the product or service loses any pride they may have in their work since the message
sent to them is it doesn't matter what the guality of the product or service is.

13. Encourage education and self-improvement for everyone.

Organizations need not only good people, they need people that continue to improve
through education. Nowhere is this more important than in the computer industry and
computer security. We are involved in a business which crosses many disciplines and
with the continual and rapid advancements in technology it takes a concerted effort
on the part of everybody to stay abreast of developments. To expect this of
employees without providing a means to accomplish it and without encouraging it is
not only unfair to the employees it is also doomed to fail. If a quality product
needs continual adjustments to improve, why shouldn't the same apply to quality
people?

14. Take action to accomplish the transformation.

In order for this philosophy to work, enough people in the organization must
understand the 14 points to champion the cause. Eventually everyone will have to
understand the philosophy and, as has been indicated, everyone will have to be
committed to it. Often this new way of doing business is a radical departure from
what is being done at the present and it is not without obstacles to its
implementation. Top management has to commit to it and then be willing to wait out
its possibly slow growth in the organization. As people come to realize its
benefits, it will pick up speed and take on a life of its own.

73

COMPUTER SECURITY AND SPC

While it may at first seem that the terms Statistical Process Control and Total
Quality Management are synonymous, this is not the case. They are, however,
inseparably linked. TQM really refers to the management commitment to guality and is
what the 14 points address. SPC is the tool used to measure the guality of the
product or service at various points throughout the process. SPC reguires that a
number of statistical points of measure be identified in order to monitor the process
under observation. A complete list of the statistical points of measure that can be
used in computer security are beyond the scope of this paper but a couple of examples
may serve to illustrate the relationship between SPC and TQM.

Several tests have been run by organizations to determine how often a system is
being "attacked" by unauthorized individuals. What has been extremely interesting in
these tests is to see how many of the attacks went unnoticed by the system managers.
After a number of these studies have been performed, a statistical average for the
number of expected attacks per month can be determined for various organizations
(government industry, education ...) and various types of systems (UNIX, VMS ...).
If a particular site reports a figure far below the expected value this may be an
indicator of a problem and would bear further research. Is, for example, this number
low because there actually aren't any attacks or because the site doesn't have the
trained personnel or tools necessary to detect the attacks?

Another example of a measurable indicator that we have used in the Air Force
relates to "unauthorized" software on personal computers. We all know the threats
posed by viruses and how easily they can spread. Conseguently in the Air Force no
software is to be used until it has been checked out and authorized to be installed.
Despite regulations that ban the use of unauthorized software, we know that if we
visit any large site we will find systems with unauthorized software. The mere
presence of such software, however, is not the issue that it once was. What is
significant is when a site's numbers are far from the statistical norm. Too many
systems with such software generally indicates a poor security posture and a poor
security education program. A number far below what was expected may indicate a good
security posture and education program.

The relationship between SPC and TQM can be seen in how the above examples are
handled. In the past, a report would be written giving the site some rating based on
certain findings. The presence of unauthorized software would have been reported and
a poor rating would have been the result. The supervisor for the site might then
have issued some statement restating the organizations ban on unauthorized software
and directing everyone to delete such software from their systems. The workers would
generally comply but within a few months the same software would again start to
appear. Instead, if TQM methods were implemented, the report would state that more
systems than expected were found to have unauthorized software and that this has been
found in the past to be an indication of problems in the security education of the
users. As can be seen, in the past we were too often involved with treating the
symptoms; now, with TQM, we are interested in finding symptoms which are indicators
of problems elsewhere that can be fixed.

A final note on the statistical points of measure is needed. These points of
measure are a crucial component in the monitoring of the security process but they
must be used in context with TQM and not misused. Most people want to know what
these points of measure are so they can immediately start measuring their security
posture but care must be taken. Without an initial commitment to TQM any points of

74

measure cannot be effectively used. The commitment to TQM must come first -- the
points will follow.

CONCLUSION

If we accept that we need to commit to TQM, what then do we as security specialists
and managers do? The answer is simple to state but harder to implement. Start by
adopting the 14 points outlined above. We all can recognize a bit of our own
organizations in these points, they are things we have been doing for years. But, as
American industry is learning, just because that's the way we have been doing it
doesn't mean that its correct or at least can't be improved. TQM is not a guick,
overnight fix — there is none. Improvements will come slowly at first but as more
people become convinced of an organization's sincerity in their commitment to
guality, the improvements will begin to come faster. This has proven true time and
time again in industry.

The hardest part in computer security will still remain that security managers are
usually outside the normal line of supervisory authority. We need to demonstrate our
commitment to security, not for security's sake but because we recognize that poor
security can adversely affect the guality of the organization's product or service.
This is the point we need to "sell."

The federal government has begun a push towards guality in its adoption of TQM.
President Bush stated in the Federal Total Quality Management Handbook that "The
improvement of quality in products and the improvement of quality in service - these
are national priorities as never before." The Air Force is committed to this idea
and its application in computer security. It is a commitment that we all need to
make if we ever hope to wield effective security programs.

REFERENCES

1. Deming, W. Edwards, Out of the Crisis, Massachusetts Institute of Technology
Center for Advanced Engineering Study, Cambridge, Mass, 1989.

2. Ishikawa, Kaoru, What Is Total Quality Control? The Japanese Way, Prentice-
Hall, Inc, Englewood Cliffs, NJ, 1985.

3. Juran, J. M. and Frank M. Gryna, Jr., Quality Planning and Analysis, McGraw-
Hill Book Company, New York, NY, 1980.

4. Scherkenbach, William W., The Deming Route To Quality and Productivity,
CEEPress Books, Washington D. C, 1990.

5. Walton, Mary, The Deming Management Method, Perigee Books, New York,
NY, 1986.

75

CONCEPT FOR A SMART CARD KERBEROS

Marjan Krajewski, Jr.
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730-1420

Abstract

This paper addresses security issues associated with authenticating users to system
services in distributed information systems. Its focus is the presentation of a concept
for augmenting the Kerberos distributed system identification and authentication
protocol through the integration of emerging smart card technology. The goal is to
protect against the threat from malicious workstation-resident Trojan Horse programs
capturing a user's authentication data for later use by an intruder and other, related
security problems.

Keywords: authentication, unitary login, Kerberos, smart cards, distributed systems,
network security

Introduction

Two critical aspects of information system security are the application of access controls based on
a user's authorizations and the creation of an audit trail based on a user's actions [1]. Both are
dependent upon the accurate authentication of users to guard against the threat of intruders
masquerading as valid users. Traditionally, a user is authenticated to a host upon presentation of a
valid combination of userid and password. In a distributed processing environment, a user often
needs to access resources located at multiple servers from multiple workstations interconnected via
a communications network. Authentication to each host accessed is crucial, but presenting
separate userid/password pairs can be both unwieldy and unsecure. What is needed is a
mechanism which requires users to identify and authenticate themselves once to a trusted agent
which then performs the necessary user identification and authentication to each accessed resource
transparently (unitary login).

Background

Previous work in developing secure unitary login protocols for distributed systems include those
intended for open environments (e.g., the Massachusetts Institute of Technology Kerberos
protocol [2], the Carnegie Mellon University Strongbox protocol [3], and the ISO OSI Directory
Services protocols [4]) and those intended for closed environments (e.g., the World Wide Military
Command and Control System (WWMCCS) Information System Network Authentication Service
(WISNAS) protocol [5], and the Department of Defense Intelligence Information System
(DoDIIS) Network Security for Information Exchange (DNSIX) protocol [6]).

Each of these protocols provides different authentication services (e.g., Kerberos, WISNAS, and
DNSIX are more connection-oriented while Strongbox and the OSI Directory Services are more
process-oriented) and depends upon different mechanisms to provide security (e.g., Kerberos
employs conventional encryption, Strongbox employs "zero-disclosure" proofs, OSI Directory
Services employs public key encryption). None of them are intended for a truly hostile
environment (i.e., one subject to active attacks against both workstations/servers and the network).
WISNAS and DNSDC, though designed for military applications, do not use any form of
encryption and, as such, are intended for physically secure environments with trusted users and no
eavesdropping threats. With these protocols, any one of a number of commercially available

76

network protocol analyzers can easily intercept sensitive authentication information if allowed
physical access to the network. The other protocols protect against the threat of network
eavesdropping but assume that workstations and servers are protected by other mechanisms (e.g.,
physical ownership/control). The covert introduction of a Trojan Horse program into these
workstations can easily "break" the authentication mechanism. Both Government and non-
Government organizations could greatly ease the problems associated with password management
and the threat from masquerading on their increasingly distributed information systems with a
unitary login capability which was secure from both a workstation/server and a network
perspective.

The Kerberos protocol possesses many advantages as a basis for this capability. Originally
developed to provide user authentication for the distributed open computing environment of MIT's
Project Athena, Kerberos is growing significantly in popularity (it has been adopted by the Open
Software Foundation and Unix International as well as being offered in several commercial
products). It uses algorithm-independent conventional (private) key encryption to protect against
network eavesdropping. This latter feature is especially important for military/intelligence
applications in that the current Data Encryption Standard (DES) algorithm might be inadequate for
certain environments. If so, it can easily be replaced with a stronger algorithm.

Kerberos Overview

Begun in 1983, Project Athena is MIT's investigation of advanced computer technology in the
university curriculum. Kerberos was developed under Project Athena as an authentication system
that can be added to existing distributed computing environments with minimal modification of
existing applications.

Kerberos utilizes a trusted central authentication server, referred to herein as the Kerberos
Authentication Server (KAS). This central server contains a database of system entities (registered
users and services) and their private cryptographic keys. These private keys, known only to the
respective entity and the KAS, allow the KAS to communicate privately with the Kerberos agent
of each system service (referred to herein as server Kerberos) and with the Kerberos agent of each
registered user who wishes to be logged in (referred to herein as client Kerberos). The central
server also contains a ticket granting service to provide a trusted means for logged in users to
prove their identity to system services. Finally, it contains a key generation service which supplies
authorized pairs of entities with temporary cryptographic keys (session keys).

The Kerberos protocol is based on the concept of tickets and authenticators. A ticket is issued by
the KAS for a single user and a specified service. It contains the serviceid, the userid, the user's
(workstation) address, a timestamp, the ticket's lifetime and a randomly chosen session key to be
used by this user and this service. This information is protected by encryption under the service's
private key. Since this key is known only to the service and the KAS, the service is assured of the
authenticity of the ticket. Once a ticket is issued, it can be used many times by the named user to
gain access to the indicated service until the ticket expires.

Unlike the ticket, the authenticator is built by client Kerberos. A new one must be generated every
time the user wishes to use a ticket. An authenticator contains the user's id, the user's
(workstation) address, and a timestamp. The authenticator is encrypted with the session key
which is associated with the ticket. Encryption of the authenticator provides integrity of the
authenticator and assures the service that the user is the system entity who received the original
ticket. The further agreement of the user id in the authenticator with the one in the ticket and the
address with the one from which the ticket arrived provides further assurance. Agreement of the
timestamp with the current time assures the service that this is a fresh ticket/authenticator pair and
not a replay of an old pair.

77

A new user or the administrator of a new system service must first register with Kerberos.
Registration consists of making a new entry in the KAS database and issuing an id and private
key. In the case of a user, the private key is issued in the form of a password. The administrator
of the system service must load the service's private key into the server Kerberos software.
Following registration, user interaction with Kerberos consists of three phases. The first phase
occurs during login (Figure 1).

Kerberos
Authentication
Server (KAS)

login request

/

[TGS ticket,
TGS session key] user's key

Client WS
/

Client Kerberos

TGS ticket
TGS session key

<U

Figure 1. Kerberos Authentication - User Login

The user first enters his userid into the workstation and sends a request to the KAS. A ticket to the
ticket granting service and its associated session key are then generated by the KAS and sent to the
user in a message encrypted in a private key derived from the user's password. The user then
enters a password and, if correct, the message is decrypted and the ticket granting service ticket
and session key are obtained. If the entered password is incorrect, the message will not be
decrypted. In the second phase (Figure 2), the user, desiring to access a specific system service,
presents the ticket granting service ticket and an associated authenticator to the ticket granting
service to request a ticket for the desired system service.

Kerberos
Authentication
Server (KAS)

reqii
TGS ticket,
authenticator '/

[server ticket,
server session key] TGS session key

Client WS
Client Kerberos
TGS ticket
TGS session key
server ticket
server session key

Figure 2. Kerberos Authentication - Obtaining a Server Ticket

The ticket and associated authenticator identifies and authenticates the user to the ticket granting
service. The ticket granting service then generates and sends an appropriate server ticket and
session key to the user, encrypted in the session key associated with the ticket granting service.

78

This message is then decrypted within the user's workstation. In the third phase (Figure 3), the
user generates an appropriate authenticator for the desired server ticket, presents the server ticket
and associated authenticator to the service, and, following validation by the server, obtains access.

Kerberos
Authentication
Server (KAS)

Client WS
Client Kerberos
TGS ticket
TGS session key
server ticket
server session key

server ticket,
authenticator

Server
Server Kerberos |

Figure 3. Kerberos Authentication - Accessing a System Service

Kerberos Security Issues

Kerberos has been analyzed from a general security perspective [7]. A significant vulnerability
involves its manipulation of the user's Kerberos password and other sensitive authentication
information (i.e., session keys) within the workstation, thereby making it vulnerable to Trojan
Horse threats which could capture such data for later use by an intruder1. Another vulnerability
involves the threat of repeated attacks at the intruder's leisure following interception of the initial
message from the central authentication server. This message contains the ticket granting service
ticket and associated session key and is encrypted by a relatively weak password-derived key. A
third vulnerability involves the inherent weakness of depending solely upon a single factor (i.e., a
password) for the initial user authentication. Passwords can be easily borrowed or stolen. These
vulnerabilities are depicted in Figure 4.

Borrowed?
Stolen? Kerberos

Authentication
Server (KAS)

login request^ [TGS ticket,
TGS session key]user*s key y

Eavesdropper

/

password

Client WS

Jjf V V fCllent Kerberos
A, \ TGS ticket
\ TGS session key
\ server ticket

server session key

Server
Server Kerberos]

Figure 4. Kerberos Login Vulnerabilities

'This particular vulnerability is not unique to Kerberos. It represents a known vulnerability of any authentication
mechanism which relies upon the user entering sensitive data into the workstation.

79

Kerheros Augmentation Concept

Advances in encryption and smart card technology have reached the point where significant
amounts of information can be stored and significant processing can be performed entirely within
the isolated environment of the card itself. When this technology is combined with user-unique
information (e.g., a password) that is useless except when processed by the appropriate smart
card, a significantly stronger authentication mechanism can be constructed than is available with
"standard" (i.e., software-only) Kerberos.

The concept described here augments Kerberos security by moving all cryptographic processing
from the workstation into a user-unique smart card and storing the user's private key in encrypted
form on the smart card (Figure 5). The user's private key would be encrypted in a key derived
from a password. In this way, neither possession of the card alone nor knowledge of the
password alone would be sufficient to authenticate a user. Encryption and decryption operations
and the storage of unencrypted authentication information would occur only within a trusted
processing environment (i.e., that of the smart card).

| Smart Card ^
^

Cryptographic
processing

Kerberos
Authentication
Server (KAS)

Figure 5. Kerberos Augmentation Concept

In proposing Kerberos augmentations, an important constraint involves maintaining
interoperability with existing Kerberos implementations. Observing this constraint allows
augmented Kerberos components to be gradually introduced into an operational environment as
time and resources permit. This constraint mandates that neither the KAS nor the server Kerberos
implementations be affected in any way. The concept presented here limits all modifications to the
client Kerberos software residing in the user's workstation. It is depicted in Figure 6 and
described in the following text.

80

Kerberos
Authentication
Server (KAS)

Server
Kerberos

client Id

password

client Id

POS ticket,
TGS sk, [user's key I TGS ticket,

auth.,
Sid

[S ticket,
s«k,)rass* I S ticket,

auth. J
Client Kerberos

Smart Card

I [TGS ticket, TGS ticket A ws address, auth. A [S ticket, S ticket A ws address, auth .1 k
TGSsk, Josef's key I time stamp, I S sk, | TGS 3k 1 T tlrna stamp, I

 T |TGSId T I ? |sw ?

hashed rTGS ticket,
password I TGS sk,]u—r

Smart Card Interface

client id,
[user's k»y]hsthadpassword

Figure 6. Smart Card Augmented Kerberos

The smart card augmented Kerberos would function as follows:

Initial State: Client Kerberos holds no user-unique information. The smart card holds the userid
in the clear and the user's private key encrypted in a key derived from a password.

Step 1: The user inserts his/her smart card into the card reader attached to the workstation.
Client Kerberos commands the smart card to transfer the userid.

Step 2: Client Kerberos sends the userid to the KAS and prompts the user for a password.
Client Kerberos derives a key from the password.

Step 3: The KAS generates the user's ticket granting service (TGS) ticket and associated
TGS session key, encrypts them in the user's private key, and sends the encrypted
message to client Kerberos.

Step 4: Client Kerberos transfers the key derived from the user's password and the
encrypted message from the KAS to the smart card.

Step 5: The smart card uses the key derived from the user's password to decrypt and obtain
the user's private key. The smart card then uses the user's private key to decrypt
the encrypted message from the KAS and obtain the TGS ticket and the associated
TGS session key. The smart card stores the TGS session key in its volatile
memory, destroys the key derived from the user's password and the decrypted
copy of the user's private key, and transfers the TGS ticket back to client Kerberos.

Step 6: To access a system service, client Kerberos first determines if a ticket to that service
is needed (one may have been obtained earlier and, if so, the process jumps to step
12). If a ticket is needed, client Kerberos transfers the workstation address, a
timestamp, and a request for a TGS authenticator to the smart card.

81

Step 7: The smart card then creates an authenticates for the TGS service by encrypting the
userid, workstation address, and timestamp in the TGS session key. It then
transfers the authenticator to client Kerberos.

Step 8: Client Kerberos sends the service request, together with the TGS ticket and
authenticator, to the KAS.

Step 9: The KAS generates the appropriate server ticket and associated server session key,
encrypts them in the user's TGS session key and sends the encrypted message to
client Kerberos.

Step 10: Client Kerberos transfers the encrypted message to the smart card.

Step 11: The smart card decrypts the message from the KAS using the TGS session key to
obtain the server ticket and the associated server session key. The smart card stores
the server session key and transfers the server ticket to client Kerberos.

Step 12: Client Kerberos transfers the workstation address, a timestamp, and a request for a
server authenticator to the smart card.

Step 13: The smart card creates an authenticator for the requested server by encrypting the
userid, workstation address, and timestamp in the server session key. It then
transfers the authenticator to client Kerberos.

Step 14: Client Kerberos sends the server ticket and authenticator to the requested service.

Step 15: Server Kerberos decrypts the server ticket and authenticator and makes an access
control decision.

Conclusions

The use of a smart card in the manner described above improves system security in three
significant ways. It requires a user to provide both something he/she possesses (i.e., a smart
card) as well as something he/she knows (i.e., a password). Either item alone is useless. This
significantly reduces the risk from password borrowing/theft. It allows the initial message from
the central authentication server to be encrypted in a truly random key (i.e., the user's private key
need not be derived from a password). A cryptographic attack on this message must therefore
assume that the entire keyspace is available for use. This significantly reduces the risk from
network eavesdropping. Finally, it ensures that only encrypted data is processed by a user's
workstation. Software residing on a workstation can view only the same data a network
eavesdropper can view (and a password tied to a specific smart card). This significantly reduces
the risk from Trojan Horse programs.

Potential issues that might arise in attempting to realize this concept include those related to
feasibility, security, and performance. Regarding feasibility, it is not clear how easily current
Kerberos implementations and current smart card technology will support the required functional
partitioning between inboard and outboard elements. Regarding security, the movement of all
sensitive processing into a smart card mandates that the smart card provide a trusted environment
which is incorruptible from the workstation. It is not clear whether current smart card technology
can provide the needed isolation. Regarding performance, the use of an outboard microprocessor
will undoubtedly impact response time, but whether or not the degradation is acceptable to the user
is critical. These issues can best be addressed through implementation and evaluation.

82

Kerberos is evolving to provide more flexibility and greater security [8]. These enhancements
facilitate smart card augmentation. Smart card technology is also advancing rapidly and advanced
systems are currently under development by numerous vendors with the capability to provide the
necessary processing [9]. The ideal smart card candidate will possess on-board general purpose
computing, several kilobytes of non-volatile and volatile memory, and anti-tamper features. One
example of current technology is the OmegaCardtm by Sota Electronics, Inc., Agoura Hills,
California. It contains an Intel 8051 custom microcomputer, 8 kilobytes of non-volatile memory,
and a mini operating system. Our current plans are to use this device as the basis for a proof-of-
concept demonstration and evaluation.

References

[1] National Computer Security Center, "Department of Defense Trusted Computer System
Evaluation Criteria," DoD Standard 5200.28-STD, December 1985.

[2] Steiner, J., Neuman, C, and Schiller, J. "Kerberos: An Authentication Service for Open
Network Systems," USENIX Conference, 1988.

[3] Yee, B. S., Tyger, J. D., and Spector, A. Z., "Strongbox: A Self-Securing Protection
System for Distributed Programs," Department of Computer Science, Carnegie-Mellon
University, Technical Report CMU-CS-87-184, 5 January 1988.

[4] ISO, "International Standard ISO 9594-8: Information Technology - Open Systems
Interconnection - The Directory - Part 8: Authentication Framework," 1990.

[5] GTE Government Division, "WIS Network-User Authentication Service (WISNAS),"
Strategic Systems Division, WIS-85-TM-16,15 March 1985.

[6] Defense Intelligence Agency, "DoDIIS Network Security Architecture and DNSIX,"
DoDIIS System Engineering Office, DRS-2600-5466-86, May 1986.

[7] Bellovin, S. M. and Merritt, M., "Limitations of the Kerberos Authentication System,"
Computer Communications Review, October 1990.

[8] Kohl, John T., "The Evolution of the Kerberos Authentication Service," Spring EurOpen
Conference, 1991.

[9] Bright, R., Smart Cards: Principles. Practice. Applications. Ellis Horwood Limited,
distributed in the US by Halsted Press, a division of John Wiley & Sons, 1988.

83

CONCEPT PAPER —
AN OVERVIEW OP THE PROPOSED

TRUST TECHNOLOGY ASSESSMENT PROGRAM

Ellen E. Flahavin
Patricia R. Toth

Computer Security Division
National Institute of Standards and Technology

ABSTRACT

This paper provides an overview of the philosophy, objectives,
and methodology of a proposed new program for the evaluation of
trusted information technology products. The program will focus
on products with the features and assurances characterized by the
TCSEC (Trusted Computer System Evaluation Criteria, or Orange
Book) Bl and lower levels. The program is product, not
application, oriented - no attempt can be made to separate
products intended to process classified information from those
intended for other applications. The program is intended to be
fully compatible with the Federal Criteria Version I. The
program will continue to emphasize the credibility and fairness
of the evaluation process. The program will allow a seamless
transition from the current process in which NSA alone evaluates
products and populates the EPL. The new program is to be
called the Trust Technology Assessment Program (TTAP). The
program recognizes the managerial and technical benefits of
NIST/NSA cooperation, and so incorporates mechanisms to utilize
the cooperation, and mechanisms to equitably and efficiently
resolve disagreements.

A. INTRODUCTION

1. PHILOSOPHY

The TTAP will establish, approve and oversee a number of
Accredited Trust Assessment Laboratories (ATALs) focusing on
products with the features and assurances characterized by the
Orange Book's Bl and lower levels. The program will use the
Federal Criteria as soon as it is available, and will develop
mechanisms for other criteria if appropriate.

The TTAP approval and oversight mechanisms will assure continued
quality and fairness; they will be modelled on NIST's existing
National Voluntary Laboratory Accreditation Program (NVLAP). To
support consistent product evaluations at multiple sites, TTAP
will develop standardized testing and analysis procedures. These

84

standardized procedures will be the basis for mutual recognition
of evaluation with other nations. (European Community
ITSEC/ITSEM evaluations are performed under the purview of
national test standardization bodies associated with NVLAP.)

We envision that market forces, now frustrated by severely
limited evaluation capacity, will drive costs and evaluation time
down once the ATALs are operating. More products, especially
current products will be available.

2. HISTORY AND RATIONALE

To date, only NSA performs the trust evaluations which place
products on the EPL. Over the last five years , there has been a
marked improvement in baseline computer security expertise.
Vendors now provide more high trust products; and have become
skilled and guite prolific with Bl and below products. The good
computer practices which make a product "trusted" also make it
bug-free, maintainable, and up-gradeable. The same improvement
in computer security expertise among vendors has also occurred
among a variety of Government organizations and contractors, as
well as a community of security consultants.

The challenges of network and information system security are
providing NSA with more work at higher levels of trust.
Technology is providing users more products with claimed security
features. A growing body of customers - users and system
security accreditors especially - need to have a fair, impartial
expert evaluation of the numerous, often confusing vendor
security claims. And technology has made available a growing
body of expertise which can be tapped to support the evaluation
of those products.

It remains essential that a wide variety of current technology
trusted products at the lower levels of assurance (Bl and below)
be readily available to US Government users. These products must
be up-to-date, affordable and adaptable to a wide variety of user
needs and applications. Vendors confronting a speedy, widely
available evaluation capability will have market incentives to be
better prepared to enter evaluation, to maintain evaluated
ratings, and so to meet the need for those products.

3. GOALS AND OBJECTIVES

A key TTAP objective is to achieve a greater number of evaluated
products - products available as Commercial Off The Shelf (COTS)
solutions for the non-classified as well as the classified
community - without sacrificing the level of guality of the
individual product evaluations.

A second major goal is to provide the US basis for mutual
recognition of product evaluations with the community using the
ITSEC.

85

The TTAP will minimize the time and cost of evaluations, and will
maximize product availability, all consistent with the level of
assurance required and without loss of quality.

The TTAP will develop methods for evaluation in accordance with
the Federal Criteria, and aligned as appropriate with the
European Community's ITSEC and ITSEM. This will assist US-based
vendors to have a single, widely accepted evaluation. This
harmonization of evaluations will be complemented by efforts to
harmonize the criteria.

Evaluation of products is always important to those who integrate
products into systems. It is the goal of the TTAP to provide
more evaluations, and more evaluation reports, which will support
the system integrators and accreditors who use evaluated
products.

Specific objectives of the TTAP are to:

a. Provide users, especially Federal government users,
with evaluation of the products they require, when they
are required.

b. Provide a single evaluation which will allow worldwide
product acceptance for US-based vendors.

c. Provide a basis for system integrators, users, and
accreditors to understand product security
functionality, and to have confidence that the features
and assurances have been evaluated.

d. Save the government and the vendor time, effort and
cost in the evaluation process.

e. Use the NSA expertise in trust wisely - maintain its
critical mass, apply it to most important national
security relevant products, and use it to teach others.

B. OVERVIEW OF THE METHODOLOGY

1. PRODUCT EVALUATION MANAGEMENT BOARD

The Directors of NSA and NIST will appoint a Product Evaluation
Management Board (PEMB), with policy and operational oversight of
the TTAP. The PEMB will be responsible for overall quality of
evaluations; and for overseeing mutual recognition arrangements
with other nations. The PEMB will also be responsible for all
operational aspects of the TTAP, including conduct of the
Technical Review Boards, grant of Bl and below product trust
ratings and oversight of the ATALs.

86

a. Only the PEMB will have the authority to grant a Bl and
below product trust rating. The rating will be granted
only if both NSA and NIST agree.

b. Ratings granted by the PEMB are intended to be
recognized nationally and internationally.

c. The PEMB will be responsible for maintaining liaison
with the product evaluation authorities of other
nations and assuring satisfaction of ongoing mutual
recognition arrangements.

d. The PEMB will be responsible for administering the
procedures of the NVLAP for ATALs established by that
program. This includes laboratory facility and
procedural guality control, oversight of the ATALs, and
sponsorship of evaluator technical training.

e. The PEMB will be responsible for general advice and
support of the ATALs, including provision of official
interpretations of criteria as reguired.

3. EVALUATED PRODUCTS LIST

There will continue to be a single US Government Evaluated
Products List (EPL). This EPL will be populated with products
evaluated under all of the approved processes described below.
That portion of the EPL which covers products evaluated under the
TTAP will be administered by the PEMB.

4. PRODUCT EVALUATION LABORATORIES

Four types of evaluation labs are envisioned to perform product
evaluations in compliance with the TTAP and the new Federal
Criteria. These include NSA's existing Trusted Product and
Network Security Evaluations Division (NSA), operating
independently according to its own requirements, plus three basic
types of Accredited Trust Assessment Laboratories (ATALs). All
three types of ATALs will be established and overseen via the
NVLAP process, and may be operated by product vendors, commercial
organizations, or government agencies. All ATALs will be
required to meet rigorous facilities, personnel, procedural and
oversight requirements specified by NVLAP. ATALs will be
approved to perform specific standardized tests and analytic
procedures for evaluation of products against the FC in the range
of trust described by current C2-B1 ratings.

a. First-Party ATALs

First-party ATALs are private testing labs operated by computer
product vendors for evaluation of their own products. These
ATALs will be limited initially to RAMP and PORT evaluations

87

only. Upon final approval of this evaluation method, first party
ATALS must meet the following requirements:

1. First-party ATALs will be required to demonstrate
strong independence from the parent firm, with full
opportunity to conduct stringent product evaluations.

2. First-party ATALs would be accredited by NVLAP to
evaluate their company's products for conformance to
the FC via performance of standardized tests and
analytic procedures.

3. They would submit evaluation reports to the PEMB for
acceptance.

4. Oversight could include PEMB auditing of the
evaluations under specified conditions.

b. Third-Party Commercial ATALs

Third-party "commercial" ATALs are private and independent
testing labs, normally operated for profit and intended to accept
any products for evaluation that sponsors are willing to pay for.

1. Third-party ATALs would be accredited by NVLAP after
approval by the PEMB to evaluate any sponsor's products
for conformance to the FC via performance of
standardized tests and analytic procedures.

2. They would submit evaluation reports to the PEMB for
acceptance.

3. Evaluation sponsors will typically include product
vendors or major Federal agency or commercial product
users.

4. Degree of third-party lab independence from commercial
sponsors, management of proprietary information, and
potential for conflict of interest are important
considerations.

5. Oversight could include PEMB auditing of the
evaluations under specified conditions.

c. Third-Party Government ATALs

Third-party Government ATALs are testing labs established within
Federal agencies (such as military Services), which will evaluate
any products that agency sponsors desire.

1. Products of interest would typically include embedded
or complex systems developed specifically to meet the
agency's mission or products of agency interest not
being evaluated by other types of labs.

88

2. Third-party ATALs would be accredited by NVLAP after
approval by the PEMB to evaluate products for
conformance to the FC via performance of standardized
tests and analytic procedures.

3. The agency could submit evaluation reports to the PEMB
if the agency desires the evaluations to be recognized
nationally and EPL ratings granted.

d. NSA and High Assurance Evaluations

NSA will be considered a fully-independent special-case
third-party Government ATAL for TTAP purposes, without PEMB or
NVLAP compliance requirements.

1. NSA will continue to be the sole organization to
evaluate products at levels of trust currently
described by B2 or higher.

2. NSA will continue to operate according to its own
requirements as it does currently.

3. NSA will maintain appropriate internally-specified
processes and levels of rigor, using any methods and
criteria (including the FC and TTAP if desired) deemed
appropriate to meet its customers' needs.

4. In addition, NSA will have the option of evaluating any
products of any type needed to meet its customer
requirements.

5. TECHNICAL REVIEW BOARD

After any testing lab completes an evaluation of a product, the
lab will forward a formal evaluation report to the PEMB. The
PEMB will convene the Technical Review Board (TRB) to review all
aspects of the product evaluation. The TRB will be an
independent organization acting under the guidance of the PEMB
and consisting of employees from the organizations making up the
PEMB and their contractors. The TRB will conduct a technical
review of evaluation reports, investigate the evaluation methods
used, question the evaluators for consistency between
evaluations, and recommend an evaluation rating or refer the
evaluation back to the testing lab. Upon completion of its
actions, the TRB will forward its recommendations to the PEMB.

6. VENDOR ASSISTANCE

Vendors with potentially evaluatable products could obtain
assistance and gain initial entry into the TTAP process as
follows:

89

a. Vendor applies to the PEMB for entry into the process.
The PEMB will assist the vendor to identify the
appropriate type of testing lab for the product. If
appropriate, the vendor will be given guidance and
initial assistance in establishing a first-party
product testing lab for NVLAP accreditation.

b. Independent testing labs may provide assistance to
vendors on a consultative basis to prepare products for
evaluation.

C. STEPS TO ESTABLISH TTAP

In order to establish this program, the following steps are
reguired (exact order of the steps must still be determined and
further refinements developed):

1. Initiate TTAP Working Group

It is essential that a joint NIST-NSA Working Group be set up
without delay to do detailed planning and coordinate
implementation of the TTAP. This Working Group should be jointly
led by NSA and NIST and staffed with a small core of selected
employees and senior contractors.

2. Establish Prototype Product Evaluation Management Board

Organizational structure and initial rules for the PEMB, defining
its role, membership and general operating procedures, and
procedures for granting/revoking ratings will be established,
will be established, and the PEMB will be brought into operation.
The prototype PEMB will initially consist of the Chiefs of NSA's
Office of INFOSEC Developmental Systems Security Evaluations and
NIST's Computer Security Division.

3. Agree Upon Federal Criteria and Approach

The Federal Criteria, including both functionality and assurance
reguirements, will be agreed upon by NIST and NSA.

4. Establish Evaluator Qualifications

Product evaluator professional gualifications, including initial
education requirements, specific evaluator training, and
experience reguirements, will be identified. These
qualifications will be established at a minimum of three levels:
initial entry, full team member, and team leader.

5. Establish NVLAP Reguirements for ATALs

Initial NVLAP accreditation reguirements for first and third
party testing labs will also be established and tested. These
requirements will include facilities, management, personnel, and
testing administration.

90

6. Establish Prototype Tests and Procedures

Prototypes of standardized analytic procedures and tests will be
initially developed and then evolved for the low end
functionality and assurance requirements.

7. Initiate Pilot Test

A pilot test of the low-end evaluation process will be conducted
by NIST and NSA.

8. Develop Evaluation Guidance

Once pilot testing and analytic procedures are working well,
formal guidance (handbooks/manuals) on conduct of evaluations for
vendors, labs, and lab personnel will be established.

9. Establish Initial ATAL Sites Under NVLAP

Using previously-developed NVLAP accreditation guidance,
establish one or more volunteer candidate labs as ATALs. Expand
NVLAP accreditation procedures to accommodate lessons learned.

10. Establish Evaluator Training Program

Using training requirements determined previously, build modules
of instruction to meet required topics, identify qualified
instructors and training facilities.

11. Establish Rules for TRB

Rules for the new Technical Review Board, defining its role,
membership, and procedures for reviewing evaluations and making
recommendations to the PEMB will be established.

12. Prepare Transition Plan for Products in Current System

Transition plan for incorporating previously-evaluated products
and products currently under evaluation into the new program will
be developed.

13. Develop Ratings Maintenance Guidance

Guidance to vendors for maintaining product ratings under the
TTAP will be developed.

14. Develop Product Ratings Usage Guidance

Guidance for users and procurement personnel on how to use the
product ratings will be developed.

15. Develop Vendor Guidance on Building Trusted Products

91

Guidance for vendors on how to design and build trusted products
to these new requirements will be developed.

D. CONCLUSION

This proposed TTAP program could provide a win-win situation.
The vendor can win because quality trusted product evaluations
could be completed more quickly with less expense and effort.
The government and private sector user communities can win
because trusted products could be brought to the marketplace more
quickly and the costs for a trusted product may become lower as
the vendors pass their savings on to the purchasers. The user
communities and vendors all could win as an increased number of
current-technology trusted products becomes available. The
vendor could sell more products and the users could have the
opportunity to purchase a wider variety of products. The vendor
could also be able to broaden their market base through mutual
recognition of product ratings with other countries.

92

CURRENT ENDORSED TOOLS LIST (ETL) EXAMPLES
RESEARCH LESSONS LEARNED

Cristi Garvey, Aaron Goldstein, Eric Anderson

TRW Systems Integration Group
Redondo Beach, CA 90278

Abstract
The Current Endorsed Tools List Examples (ETL)
Project1 developed a simple, yet realistic, worked ex-
ample of Al verification technology. This example
was developed on schedule and within budget by a
novice verifier. The project produced many lessons
learned. The most important of these to the research
community are the following:

• Prototyping the design verification process re-
duces rework of both the system design and of
the verification tasks.

• Using the Deductive Theory Manager and Gypsy
Reprover tools make the Gypsy Verification En-
vironment user more productive.

• By applying a combination of techniques, the
Gypsy Information Flow Tool can be used on
a significant example.

Introduction

The Current ETL Examples project addresses a need
for publicly available worked examples demonstrat-
ing the use of design verification technology in system
development. At the time this project began, few ex-
amples of successful Al verification efforts had been
completed; even fewer were available in the public
domain. Furthermore, those very few examples that
were available were either too complex to be under-
stood by novice users of verification technology or
too simple to be of any help in verifying real systems.
This has resulted, understandably, in a general lack
of enthusiasm for the use of verification technology in
the development of secure systems. System builders
are not encouraged to use formal verification tech-
niques, since they have not seen the benefits of the

'This project was performed under contract number
MDA904-90-C-7058 for the Department of Defense.

significant effort that is required to apply them. Like-
wise, they are not encouraged to use automated veri-
fication tools, since the available tools have not been
sufficiently field tested. Worse yet, the limited ap-
plication of such tools has amplified the problem by
denying the tool developers sufficient opportunities
to field test their products.

The goals of this project were: 1) to develop a
worked example of the application of verification
technology; 2) to assess the effort required and the
benefits obtained in doing so; and 3) in the process,
to develop new sources of verification expertise.

These goals were realized in a small-scale example
of design verification for a trusted computer system.
The example involved verification of a simple, hypo-
thetical, small computer system that was designed to
meet requirements at Class Al of the Trusted Com-
puter System Evaluation Criteria (TCSEC)[Cen85].
That computer system was modeled, specified, veri-
fied and analyzed using state of the art verification
tools and techniques. All of the verification tasks
were performed by a software engineer who had no
prior experience using verification technology, but
who had significant experience in developing software
for secure systems. The verifier was trained on the job
by a verification consultant (an expert in the use of
formal verification tools and techniques). In addition
to training the verifier and reviewing his work, the
verification consultant was responsible for installing
and maintaining the automated verification tools.
The verifier's experiences (both good and bad) in ap-
plying verification technology to the design of the ex-
ample system were carefully documented[TRW91aj.
In addition, labor (i.e., man-hour) expenditures for
each verification activity were precisely recorded.

System Description

The example system is referred to as the Kernel
File Manager (KFM). This hypothetical system is as-

93

NONKERNEL
DOMAIN

APPLICATIONS
PROCESSES

i

TCB Interface
Domain Transition!

KERNEL
DOMAIN

i

OPERATING SYSTEM
KERNEL [KFM

i

Data Transfers

Disk
Device

Figure 1: KFM Operational Environment

sumed to serve as a subsystem of a multilevel secure
operating system. More specifically, it is assumed to
be a component of the operating system's security
kernel. Its purpose is to manage all disk resources
under the control of the operating system. Figure 1
illustrates this relationship between the KFM and its
operational environment.

The KFM organizes the storage on a disk device
into logical entities called files. Processes do not ac-
cess the disk device directly; they may only access
files. Furthermore, they may do so only through a
limited set of operations provided by the KFM. These
operations, termed kernel services, are invoked by
means of a secure domain transition mechanism that
is assumed to be implemented by the operating sys-
tem. The KFM provides kernel services for creating
and deleting files, opening and closing them, read-
ing and writing their contents, and modifying their
discretionary access attributes.

The security policy for the KFM[TRW9l] is de-
rived from security policy requirements at Class Al
of the TCSEC, which are in turn derived from United
States Department of Defense (DoD) policies such
as those described in DoD Directive 5200.28[T>oD?>?>\.
The KFM security policy includes the mandatory and
discretionary access policies outlined in the TCSEC,
which are primarily concerned with disclosure of in-
formation. It does not include policies concerning
data integrity, however.

The kernel services provided by the KFM are typi-
cal of the kinds of services provided by real operating

system security kernels. They include services that
create and delete objects, services that initiate and
terminate access to existing objects by existing sub-
jects, services that transfer information from subjects
to objects and vice versa, and services that modify
discretionary access permissions for objects. Specif-
ically, the KFM controls access between processes
(subjects) and files (objects). Two modes of access
are supported: Read (observation only) and Write
(observation and alteration). Mandatory access con-
trol decisions are based on a comparison of the secu-
rity levels, each consisting of a hierarchical classifica-
tion and a non-hierarchical set of categories, associ-
ated with each subject and each object. Discretionary
access control decisions are based on a comparison of
the subject's desired mode of access against the al-
lowed modes of access indicated by the user access
control list and group access control list associated
with each object.

"Although the KFM is actually part of a larger sys-
tem, it is treated as a separate system for the pur-
poses of this example. Verification of a complete op-
erating system security kernel is too large a task for a
tutorial example such as this. Limiting the function-
ality of the example system to a small set of services
typical of those provided by real operating system
security kernels produces a smaller, more useful, ex-
ample of the application of verification technology.

Design Process

The design process for a Class Al system, such as
the KFM, involves both traditional design activi-
ties and formal verification activities. The former
include designing the software to meet its require-
ments and writing an informal specification of the
top level design (i.e., a Descriptive Top Level Specifi-
cation (DTLS)). The latter include producing a for-
mal model of the security policy, informally demon-
strating that the DTLS is consistent with the secu-
rity model, writing a Formal Top-Level Specification
(FTLS) of the design, mathematically proving that
the FTLS is consistent with the security model and
performing a covert channel analysis.

In designing the KFM, we decided to prototype
the design process for a single kernel service prior
to designing and verifying the rest of the system.
There were two reasons for this decision. First of
all, we needed a vehicle for rapidly training the in-
experienced verifier. In taking a single kernel service
through the complete design process, the novice ver-
ifier would rapidly become acquainted with all of the
tools and techniques necessary for verification of the
remaining kernel services. Secondly, we needed to re-

94

fine our specification style and verification approach.
By doing this early in the design process, we hoped
to avoid costly rework.

Our specification style and verification approach
were based on those developed for verification
of the Army Secure Operating System (ASOS)
kernel[BLD90][BDCG90]. In addition to incorpo-
rating many of the lessons learned from the ASOS
verification effort, we revised the specification style
and verification approach to allow for the use of new
tools - in particular, the Deductive Theory Manager
(DTM)[BDCG90] and the Gypsy Reprover[TRW90b]
Tool. We also developed a more workable ap-
proach for using the Gypsy Information Flow Tool
(GIFT)[JM89] to automate covert channel analysis.

The use of an automated verification system was an
integral part of our verification approach. We chose
to use the Gypsy Verification Environment (GVE),
which is one of two verification systems endorsed by
the National Computer Security Center. The GVE
provides a collection of facilities for formal verifica-
tion of programs expressed in the Gypsy language.
These facilities include the following:

• a parser, which checks Gypsy text for syntactic
and semantic errors;

• a verification condition (VC) generator, which
generates theorems concerning a program's
consistency with its formal specifications; and

• an interactive theorem prover which is used to
prove these theorems (or VCs) by the applica-
tion of mathematical logic.

In order to use the GVE to automate the task of
proving FTLS consistency with the formal security
policy model, we had to express both the model and
the FTLS in the Gypsy language. We then had to
construct a Gypsy program, in the form of a state
machine, representing the KFM's operating environ-
ment. Within this Gypsy program, invocations of
KFM kernel services were represented by procedure
calls to the corresponding procedures defined in the
FTLS. The effects of such invocations were repre-
sented by changes in a global state variable. These
changes were translated, by means of a Gypsy func-
tion referred to as the interpretation function, into
corresponding changes in an abstract protection state
defined by the formal security policy model, thereby
enabling verification of the state changes and the re-
sulting protection states with respect to the proper-
ties of the model. The GVE's verification condition
generator was applied to the Gypsy representation of
the KFM's operating environment, in order to gen-
erate the necessary theorems for proving FTLS con-
sistency with the model. These theorems were subse-

quently proved using the GVE's interactive theorem
prover.

Other tools have been integrated into the GVE in
order to reduce the amount of user interaction re-
quired to use the theorem prover and in order to pro-
vide automated support for covert channel analysis.
These tools are the Gypsy Reprover, used to replay
previously generated proofs, the Deductive Theory
Manager (DTM), used to automate similar proofs,
and the Gypsy Information Flow Tool (GIFT), used
to automate the process of identifying covert chan-
nels. These tools are discussed in detail in the Lessons
Learned section.

Lessons Learned

Many valuable lessons were learned in the course of
this project. The three most valuable lessons for the
research community concern prototyping, use of the
DTM and Gypsy Reprover, and use of the GIFT.
These are discussed in the following sections.

Prototyping Design Verification

The most important lesson we learned was that re-
work of both the system design and verification tasks
can be reduced by prototyping the verification pro-
cess. Problems in the verification approach can be
costly to correct because they usually are not uncov-
ered until late in the design process. The advantage of
prototyping is that lessons learned from verification
of one kernel service can be applied to verification of
the other kernel services.

During prototyping, for example, we learned that
the demonstrations of FTLS and DTLS consistency
with the formal security policy model should be per-
formed only after the covert channel analysis has been
completed. At first, we did things the other way
around; we performed the formal proofs demonstrat-
ing FTLS consistency with the model before we per-
formed the covert channel analysis. As a result, we
had to repeat a considerable number of those formal
proofs when we made changes in the FTLS to elimi-
nate covert channels. The reason we had to repeat so
many proofs was that the kinds of changes that were
necessary to eliminate covert channels (i.e., changes
in data types) tended to impact multiple proofs in
fairly drastic ways. By contrast, the kinds of interface
changes that were necessary to correct inconsistences
between the FTLS and the security model typically
impacted only a few proofs and in relatively minor
ways. We also discovered that more effort was re-
quired to repeat the proofs of FTLS consistency with
the model than to repeat the covert channel analysis.

95

We concluded that we could reduce the overall cost of
the verification effort by performing the covert chan-
nel analysis first. Consequently, for the remaining
kernel services, we changed the order of the verifica-
tion tasks.

Another lesson that we learned concerning proto-
typing of the verification process was that it provided
an excellent vehicle for training. We found that in the
course of the prototyping effort, our novice verifier
learned nearly everything he needed to know about
verification tools and techniques. He was able to com-
plete the design and verification of the remaining ker-
nel services with little or no help from the verification
consultant. This result suggests that a larger propor-
tion of inexperienced personnel could be employed
in future verification efforts and that they could be
trained by means of prototyping exercises. Such an
approach would do much to promote the spread of
verification technology.

Finally, we learned that prototyping can be used
to promote the effectiveness of the DTM tool as de-
scribed in the following section.

Use of the DTM and Reprover

The Deductive Theory Manager (DTM) is used to
automate some common sequences of proof steps, in
order to reduce the manual effort required to com-
plete the formal proofs of FTLS consistency with the
model. These common sequences of proof steps may
be either complete proofs or portions of a proof. The
information necessary to automate the proof steps is
encoded in a knowledge base. It is encoded in the
form of general rules and scripts which can be ap-
plied to a wide variety of similar proofs.

The DTM is most effective when many of the proofs
share a common proof strategy. Once a common
proof strategy is encoded in the DTM's knowledge
base, the DTM can automatically perform proofs for
which that strategy is appropriate. The trick is to
determine which proof strategies are worth incorpo-
rating into the DTM's knowledge base. Since a sig-
nificant investment may be required to incorporate a
proof strategy into the knowledge base, the cost sav-
ings from automation of the applicable proofs must
be sufficient to justify the investment in engineering
the knowledge base. Prototyping provides an oppor-
tunity to formulate various proof strategies and to
determine which ones are most suitable for incorpo-
ration in the DTM's knowledge base.

The most important lesson that we learned con-
cerning use of the DTM is that the investment re-
quired to incorporate a proof strategy into the knowl-
edge base must be carefully weighed against the po-

tential for reuse of the proof strategy. One example
of where we found this investment to be worthwhile,
for the KFM, was in automating the top-level proof
of each kernel service. It is interesting that we were
able to make effective use of the DTM at all, since
our example was intentionally chosen to demonstrate
a diversity of proof strategies. The DTM is most ef-
fective when there are large numbers of similar proofs.

The Gypsy Reprover (sometimes referred to as just
the Reprover) tool is used to automatically repeat
previous formal proofs after correcting errors and
omissions in the model and the FTLS, and after mod-
ifying the FTLS to eliminate covert channels. One
part of this tool, the Command Extractor (CE), ex-
tracts theorem prover commands from a proof log
produced by the interactive theorem prover in a pre-
vious proving session. The commands extracted by
the CE are written into a command file. This com-
mand file is then supplied as input to a second part
of the Reprover tool, the Command File Executive
(CFE), which invokes the interactive theorem prover
and then replays the commands.

The most important lesson that we learned con-
cerning use of the Reprover is that it can be ex-
tremely useful in revalidating proofs after making
changes to the FTLS. The Reprover is able to au-
tomatically revalidate any proofs that are not signifi-
cantly affected by the changes. It is often possible to
use the Reprover to repeat some portions of a proof
and to complete the rest of the proof interactively.
Sometimes it is also possible to anticipate the changes
that will be required in a proof and to manually edit
those changes into the command file before invoking
the Reprover's Command File Executive. We found
that, through a combination of these techniques, we
were able to use the Reprover to reprove previously
generated proofs approximately 75% of the time.

The Reprover is capable of repeating only the ex-
act same proof steps that were performed in an earlier
proof. If the changes in the FTLS affect the opera-
tions that are required for the proof, the Reprover
cannot repeat the proof. Even if the required op-
erations are identical, any changes in the number or
order of hypotheses appearing in the theorems and/or
the number or order of variables may adversely affect
the Reprover's ability to repeat a proof.

Another lesson that we learned concerning the Re-
prover is that certain precautions must be taken dur-
ing an interactive theorem prover session in order to
ensure that the proof will be repeatable using the
Reprover. For instance, justifications must be pro-
vided immediately for any claim operations (i.e., the
claimed fact must not be used until after it is proved).
When a claim operation is performed, the person con-

96

ducting the formal proof has the option to justify the
claim immediately or postpone the justification un-
til the end of the current branch of the proof. The
Reprover tool cannot repeat the proof if the latter op-
tion is chosen, since it cannot locate the proof steps
for the corresponding justification in the proof log.

Use of the GIFT

The Gypsy Information Flow Tool (GIFT) automates
the application of formal flow analysis techniques
to the FTLS, in order to identify covert channels.
Specifically, the GIFT is used to automatically gen-
erate a shared resource matrix (SRM) based on the
formal specifications of the kernel services (from the
FTLS). Once the SRM is generated, a security level
is associated with each shared resource by means of
a level function association set (LFAS). The LFAS
associates a specified Gypsy function, whose domain
is of the security level data type, with each resource.
The GIFT is then used to generate security verifica-
tion conditions (SVCs) for each potential information
flow indicated by the SRM.

Initially, an SVC is generated for each potential in-
formation flow indicated by the SRM. Each SVC is
a formula which may or may not be a theorem. If
an SVC is a theorem, then its corresponding infor-
mation flow is guaranteed to satisfy the information
flow policy.

The most important lesson that we learned with
respect to use of the GIFT is how to minimize the
number of SVCs generated. The number of SVCs
generated by the GIFT (i.e., the number remaining
after automatic consolidation and simplification) is
the single most important factor in determining the
level of effort required for covert channel analysis.
Each SVC must be analyzed by inspection, which is a
very labor-intensive and potentially error-prone pro-
cess. Thus, as the number of SVCs increases, the
amount of labor required for their analysis also in-
creases, as does the opportunity for making mistakes
in their analysis. In addition, if any of the SVCs are
to be formally proved (as was done for the KFM),
the formal proofs will require a considerable amount
of labor. The amount of labor required for the formal
proofs depends on the number of SVCs to be proved,
which also increases along with the number of SVCs
generated.

All of the techniques for reducing the number of
SVCs described below are required to make the num-
ber of SVCs small enough to make the GIFT usable.

We learned that one way to reduce the number
of SVCs generated by the GIFT is to follow cer-
tain guidelines for the Level Function Association Set

(LFAS) supplied as input to the GIFT:

• Assign the system-low security level to all ker-
nel state components that are not modified by
any of the kernel services and do not contain
classified data;

• Assign the system-high security level to all ker-
nel state components that are not read by any
of the kernel services;

• Assign the subject security level to all kernel
state components associated with a particular
subject;

• Assign the object security level to all kernel
state components associated with a particular
object;

• Assign the system-high security level to all ker-
nel state components associated with inactive
subjects, inactive objects or invalid authoriza-
tions;

• Assign the subject security level for the cur-
rently executing subject to the User resource.

These assignments of security levels to system re-
sources seem to significantly reduce the number of
SVCs generated by the GIFT. They are also easily
determined from the shared resource matrix (SRM)
generated by the GIFT.

We found that we could further reduce the number
of SVCs by configuring the GIFT settings as follows
prior to dependency analysis:

• SET GIFT EXPANSION SVCS

• SET GIFT MODEL-LOW <system-low>

• SET GIFT MODEL-HIGH <system-high>

(where <system-low> and <system-high> are the
minimum and maximum values, respectively, of the
security level type defined in the FTLS). The GIFT
EXPANSION setting controls the degree to which
functions appearing in the SVCs are expanded by the
GIFT. The default setting does not expand functions
appearing in the SVCs. Consequently, many different
SVCs are generated. The SET GIFT EXPANSION
SVCS command causes all functions appearing in the
SVCs to be fully expanded. When fully expanded in
this manner, many of the SVCs turn out to be iso-
morphic (i.e., there are many duplicates). The GIFT
automatically consolidates isomorphic SVCs (i.e., it
eliminates duplicates), thereby reducing the number
of SVCs by an order of magnitude. After consolidat-
ing isomorphic SVCs, the GIFT automatically sim-
plifies each SVC using the simplification capabilities
of the GVE's interactive theorem prover. The SET
GIFT MODEL-LOW and SET GIFT MODEL-HIGH
commands allow the GIFT to use lemmas about the

97

system-low and system-high security levels during the
automatic simplification phase. In particular, the
GIFT uses these lemmas to automatically eliminate
any SVCs of the form x dominates system-low or of
the form system-high dominates x. This further re-
duces the number of SVCs generated by the GIFT.

In analyzing the SVCs generated by the GIFT for
the KFM, we found that the "guard" SVCs usually
were not indicative of covert channels. These SVCs
appear to be the result of overly conservative assump-
tions on the part of the GIFT with respect to flows
of information from guard conditions. The GIFT as-
sumes that information always flows from guard con-
ditions to resources whose values depend on the guard
conditions. For example, consider the if expression
shown below:

if G then
T - a

else
T = b

fi;

The concern is that a user may be able to infer some-
thing about the guard expression, G, based on the
value of the target resource, T. If any of the re-
sources appearing in the guard expression are as-
signed a higher security level than T, there is a poten-
tial covert channel. The assumption that information
always flows from G to T is overly conservative, how-
ever. It may be that the change in Tis not observable
by the user or that it is only observable in one of the
two cases (i.e., when G is true or when G is false, but
not both). Such is the situation for the KFM, when
T is a component of the kernel state. Because the
error conditions result in no observable change in the
kernel state, one cannot infer anything about the re-
sources used to test for errors by observing changes in
the kernel state. An observable change in the kernel
state only occurs in the absence of an error; but in
that case, the access checks guarantee that observa-
tion of the change in the kernel state does not violate
the security policy. When T is not a component of
the kernel state (e.g., when it is an output parameter
for the kernel service), though, the "guard" SVC may
indeed indicate a covert channel.

In writing the FTLS, we found that any functions
used (either directly or indirectly) in the specifica-
tions of the kernel services should conform to the fol-
lowing style:

• With few exceptions, they should not be de-
clared as pending (the exceptions are functions
that do not have any part of the kernel state as
a parameter and that do not produce compo-
nents of the new kernel state);

• Whenever possible, they should be written in
a form that is expandable by the interactive
theorem prover (i.e., they should be of the form
result =< whatever >);

• The parameters of any non-expandable func-
tions should not include any unnecessary com-
ponents of the kernel state.

This style was suggested by our verification consul-
tant and is also recommended in Appendix D of the
ASOS Covert Channel Repor<[TRW90]. It is intended
to facilitate formal flow analysis using the GIFT. If
the FTLS does not conform to this specification style,
the GIFT will either abort during dependency anal-
ysis or it will generate a very large number of SVCs.
Note that this specification style need not be imposed
on any of the interpretation functions used to map
components of the kernel state into components of
the model's protection state. Also, note that this
specification style need not be imposed on any of the
other functions used in the Gypsy representation of
the KFM state machine.

When performing dependency-analysis, we found
that the GIFT may complain about functions that
it cannot expand. Either these functions must be
reformulated in such a way that they are expandable
or their parameter lists must be changed so that only
a minimal portion of the kernel state is passed to each
function.

The results of our covert channel analysis are sum-
marized in the following table. Each kernel service
is listed with the number of total SVCs generated,
the number of SVCs which we were able to prove,
the number of SVCs we were unable to prove and the
remaining covert channels. We added a delay to the
Write Disk kernel service to reduce the bandwidth of
the remaining two covert channels.

Summary of Covert Channel Analysis Results

Kernel Total Proven Unprv Covert
Services SVCs SVCs SVCs Chnls
Create File 22 18 4 0
Delete File 27 12 15 0
Open File 6 5 1 0
Close File 2 2 0 0
Read Disk 3 3 0 0
Write Disk 14 10 4 2
Modify DAC 49 22 27 0

Additional Lessons Learned

A few of our other valuable research lessons learned
are described in the following paragraphs. Each para-
graph describes a single lesson learned.

We found that the formal verification process iden-
tified flaws in the requirements and design. From

98

mapping our requirements back to the TCSEC we
discovered we were missing requirements to address
object reuse. We needed to impose some additional
requirements to meet the object reuse criteria and
to provide greater control over propagation of dis-
cretionary permissions. For example, we added a
requirement for the Close File kernel service to re-
claim the specified file object so that it may be reused.
We also added a requirement for the Modify Discre-
tionary Access kernel service to ensure that modifi-
cation of discretionary access permissions would be
allowed only if the calling program instance were op-
erating on behalf of the owner of the specified file.

In developing the interpretation function, we found
it useful to decompose the function into a hierar-
chy of functions based on the structure of the pro-
tection state data type. This is the way we ini-
tially decomposed the interpretation function for the
KFM. Since the protection state consists of four com-
ponents, we decomposed the interpretation function
into four functions, each of which returned one of the
four components. Each of these functions took the
corresponding portion of the kernel state as a param-
eter.

We found it essential to save core images that could
later be re-executed, rather than using the GVE's
save and restore commands. The GVE's save and re-
store commands save the GVE's internal database in
a file and restore it from a file, respectively. Each
time the GVE's database is saved and restored, the
database grows in size (this is a known bug in GVE
version 20.70). This can lead to a fatal error during
restoration of the database, since the GVE eventually
reaches its dynamic memory allocation limit. An al-
ternative way to save the GVE's internal database
is to save a core image (i.e., an entire memory im-
age) of the GVE in execution. This is done by in-
voking the LISP environment upon exiting the GVE,
and entering the LISP command "(si::save-system
"<filename>")'' (where <filename> is the name of
the file in which the core image is to be saved). An-
other benefit of saving core images is that the time
required to save them and reexecute them is consider-
ably less than the time required to execute the GVE's
save and restore commands.

We learned not to accumulate completed proofs in
the GVE's internal database. As proofs accumulate,
the size of the GVE's internal database grows. As the
database grows, the performance of the GVE's inter-
active theorem prover degrades severely. This prob-
lem can be solved by using a freshly parsed database
for each proof (we saved a core image, to avoid having
to reparse the specifications each time).

We discovered that it is effective to divide the

FTLS into multiple source files in such a way that
each individual kernel service can be parsed and
proved separately. Parsing and proving only a por-
tion of the FTLS at a time minimizes the size of the
GVE's internal database, thereby optimizing perfor-
mance. Dividing the FTLS into multiple source files
also facilitates maintenance and configuration man-
agement of the FTLS.

One of our most important lessons learned was ac-
tually relearned. We found that lemmas were valu-
able in modularizing the proofs and improving per-
formance of the GVE.

Benefits and Cost

Our experience demonstrates that there are many
benefits to using formal verification technology. First,
the verification process uncovers problems in the re-
quirements and design. If a prototyping approach
is used, these problems can be surfaced early in the
project life cycle to save cost and schedule. Secondly,
there are benefits from writing the formal top level
specifications. This exercise helps define the kernel
services precisely, especially with respect to error con-
ditions. Writing the formal specifications also encour-
ages the definition of simple interfaces and provides
the basis for test case generation. Finally, formal
design verification has many benefits. Covert chan-
nels are detected early in the project life cycle, as-
surance is gained that the design implements the se-
curity model and requirements and design flaws are
uncovered.

There is of course some cost to perform formal veri-
fication. We estimated that, for the Kernel File Man-
ager, the formal verification process added about 40%
to our development estimate. Although we did not
have requirements to code and test the KFM, we es-
timated the cost to do so. We assumed that it would
take 3000 lines of code to code the KFM. At a pro-
ductivity rate of 75 lines per man month, it would
take 40 man months to code the KFM. It took 16.3
man months to perform the formal verification tasks
for the KFM (we subtracted out 1.5 man months of
design time from the 17.8 man month total). Di-
viding the time to perform verification by the time
required to develop the KFM (16.3/40) gives 40% as
the overhead to perform verification of the KFM.

Of that 40% it is interesting to note where we
spent our time. 15% was spent writing the model
and another 8% was spent proving the model was in-
ternally consistent. 14% was spent writing the FTLS
and 47% proving the FTLS was consistent with the
model. 16% was spent performing the covert channel
analysis. What is interesting about these numbers is

99

References that we got the least benefit from proving the FTLS
was consistent with the model, which represents the
largest percent of our time. The only requirements (BLD90J
and design flaws were uncovered during covert chan-
nel analysis. It might be more cost effective to, in
addition to proving the model is internally consis-
tent, prove only selected (by the customer) portions
of the FTLS and to write up English descriptions of [BDCG90]
the proofs for the remainder of the system.

We think the 40% overhead number is a worst case
number. The 23% of the time spent on the model
was essentially a one time cost. If this example were
to be extended, the time to update the model would
be minimal. If the 47% spent on proving the FTLS is
consistent with the model could be reduced by prov-
ing only selected portions of the system, we think the
40% overhead could be reduced to 20% or even 15%.

[Cen85]

Conclusions

The Current ETL Examples project has produced a
a simple, yet realistic, worked example of Al verifica-
tion technology and produced many valuable research
lessons learned in the process. The most important
of these to the research community are the following:

• Prototyping the design verification process re-
duces rework of both the system design and of
the verification tasks.

• Using the Deductive Theory Manager and Re-
prover tools make the Gypsy Verification Envi-
ronment user more productive.

• By applying a combination of techniques, the
Gypsy Information Flow Tool can be used on a
significant example.

Acknowledgements

The authors gratefully acknowledge the review com-
ments of Karen Ambrosi, our contract monitor,
Michele Pittelli who attended all of our project
reviews and made many helpful comments, Jim
Williams, our MITRE reviewer, and of our colleague
Ruth Hart. We are also indebted to our formal verifi-
cation consultant, Alex Murray. This paper is largely
the result of work conducted as part of the Current
Endorsed Tools List (ETL) Examples project, spon-
sored by the Department of Defense, under Contract
No. MDA904-90-C-7058.

B. L. DiVito, P. H. Palmquist, E. R. An-
derson and M. L. Johnston, "Specifica-
tion and Verification of the ASOS Ker-
nel", PTOC. 1990 Symposium on Research
in Security and Privacy, IEEE, May 1990.

B. DiVito, C. Garvey, D. Kwong, A. Mur-
ray, J. Solomon, and A. Wu, "The De-
ductive Theory Manager: A Knowledge
Based System for Formal Verification",
Proc. 1990 Symposium on Research in Se-
curity and Privacy, IEEE, May 1990.

National Computer Security Center,
Department of Defense Trusted Com-
puter System Evaluation Criteria, DoD-
5200.28-STD, December 1985.

[JM89] J. McHugh, R. L. Akers and M. C. Tay-
lor II, GVE Users Manual: The Gypsy
Information Flow Tool, A Covert Chan-
nel Analysis Tool, Technical Report #12-
c, Computational Logic, Inc., Austin, TX,
July 1989.

[D0D88] Department of Defense, Security Require-
ments for Automated Information Sys-
tems (AISs), DoD Directive 5200.28,
March 1988.

[TRW90] TRW, Covert Channel Analysis Re-
port for the Army Secure Operating
System (ASOS) (Final), CDRL G007,
delivered under contract DAAB07-86-
CA032, TRW Systems Integration Group,
September 1990.

[TRW90b] TRW, Software Users Manual for the
Gypsy Reprover Software Development
(Reprover) (Final), CDRL A001, deliv-
ered under contract 731933-FS, TRW
Systems Integration Group, March 1990.

[TRW91] TRW, Formal Security Policy Model for
the Current Endorsed Tools List (ETL)
Examples (Final), CDRL A003, deliv-
ered under contract MDA904-90-C-7058,
TRW Systems Integration Group, August
1991.

[TRW91a] TRW, Final Report for the Current En-
dorsed Tools List (ETL) Examples (Fi-
nal), CDRL A004, delivered under con-
tract MDA904-90-C-7058, TRW Systems
Integration Group, August 1991.

100

DATA SECURITY FOR PERSONAL COMPUTERS

Paul Bicknell
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730

617/271-3625

ABSTRACT

Personal computers are vulnerable to a wide range of risks including viruses, trojan horses, and
damage by malicious or inadvertent use. These vulnerabilities are based on the lack of integral
security provisions designed into PC operating systems. A number of models of security have
become available to address this lack in PCs and this paper presents these by establishing
identified model groups and by discussing the security technology represented by each group.
Each model group provides a unique solution to a particular PC security vulnerability.

INTRODUCTION

The use of personal computers (PCs) has become a significant factor in data processing.
PCs are rapidly replacing the reliance on large centrally located time-sharing systems for
general purpose computing in offices and laboratories. As this transition to locally based
computing continues, attention is being focused on the issue of providing adequate protection
for data stored on these PCs. These systems have a near total lack of inherent data security
provisions and are vulnerable to data loss and corruption from either inadvertent or malicious
actions. The basis for these threats lies with the absence of integral mechanisms, which could
limit the actions of a user on stored data resources. These systems have very little ability to
deny a user, or program running on behalf of a user, any operations that the system is designed
to perform.

As PCs have become widely used, a trend to view these systems as additions to, or actual
replacements for, time-shared, multiuser, mini- and mainframe computer systems has started.
But as users transition away from the dependence on traditional systems, there has been a
lessening of reliance on the security mechanisms of these larger systems to protect data assets.
Mechanisms such as access control, auditing, and authenticated login are generally lacking in
PCs, and this is introducing an increased risk to the work done on these systems.

The vulnerabilities of data stored on PCs has been apparent for some time to a group of
programmers who are independently developing hardware and software packages intended to be
added to existing PCs to partially resolve the security deficiencies. These developers are
working with systems that are initially wide open and are designing innovative solutions to the
security problem. However, due to the lack of a native security models in PCs, there is no
standard security architecture to limit the solutions these developers are producing. For this
reason, a large number of add-on security packages have become available which provide a

101

variety of dissimilar security technologies to address the most common problems of physical
protection, access control, and defense against computer viruses.

The intent of this paper is to present the results of a study into available security
technologies and to describe the logical groupings into which the majority of existing
add-on security systems can be organized. It does not seek to give examples of how to build a
security system; rather, an attempt is made to provide insight into how others are currently
designing security packages and to describe the security model of each architecture.

The Lack of Security in PCs

The primary reasons for the lack of inherent security provisions in PCs are economic and
technical. The economic reasons are quite evident since the goal to make an inexpensive system
would have been compromised if the operating system and hardware were designed to provide
data protection. The technical reasons are closely tied to the economic and relate to the
availability of affordable mass-storage devices when PCs were being conceived in the 1970s.

The lack of hard disk drives necessitated the use of removable floppy disks which meant that
permanent data storage on a PC was not possible. There was little design justification for
introducing security mechanisms into an otherwise simple operating system.

There were other reasons why the original PC designers avoided security, and these were
related to a general revolution in computer usage that occurred as a result of the advent of the
personal computer. This revolution had a definite goal, which was to bring computers to the
masses; to do this required an easy-to-use, nonintimidating, user interface. PCs were going to
be marketed as appliances; and under this view, to protect one user's data from another's was
pointless because each user would have his own isolated system. In this situation there was no
need, for what to a nonuser would seem a threatening confrontation with a computer, to require
the user to identify and authenticate himself before beginning to perform any operations.

Problems existed in reasoning against security and included not anticipating the rapid
development of cost effective hard disk drives and the long-term storage of data on systems.
Also not considered was another equally rapid advance in technology that occurred at the same
time as the PC revolution, networking. Advances in communications technology allowed the
previously isolated PCs to be connected together through networks and telephone lines.

The irony is that what initially consisted of multiple users sharing a common resource (a
time-sharing system) has not changed. Multiple users are still sharing a common resource (the
communications network and all the PCs connected). Only now, unlike a time-sharing host
which had adequate security (e.g., authenticated login, access privileges, etc.), the current
networked distributed systems made up of PCs have very little if any data protection
capabilities.

The basis of the security vulnerability of PCs was fundamentally related to the architecture
of the original processor chips. The processors were single state machines. That is, there were
no supervisor state or privileged commands to provide a security barrier around powerful
operations. There was no limit to or restrictions on the actions of users on stored data
resources, and users could not be denied total access to the system. Furthermore, users were

102

able to run private versions of the operating system by booting from the floppy disk drive, so
any modifications made to the resident operating system could be overcome. Also, low level
utility tools became widely available, allowing users to perform raw I/O instructions beyond the
control of the operating system.

To alleviate these security deficiencies, software/hardware packages have been developed.
However the lack of any standard security architecture has resulted in the creation of numerous
designs. These fall into three fundamental security model groups: physical protection, domain
isolation, and viruses and Trojan horses.

PHYSICAL PROTECTION

Physical security is conceptually the simplest way to protect stored data. The primary
objective is to secure a PC during the time a user is not active on the system and thereby prevent
access by other users either to the machine or to the data stored on the machine. No attempt is
made to share resources, and no protection is provided against other machines accessing across
a network. Also, no attempt is made to provide any sort of interactive data protection - the PC is
either totally open or completely closed. In addition, few or no mechanisms are provided to
protect a PC against the introduction of a computer virus which may be carried into the system
hidden in a useful program.

Two subgroups of physical protection systems exist: access lockout and removable
components.

Access lockout protection systems are those which attempt by physical means to totally lock
down a system when a user leaves, These systems are usually key-locking systems which can
provide such protection as making the power switch inaccessible or preventing keyboard
commands from reaching the processor. They can also physically attach the protected PC to a
table, thereby preventing its removal. These protection systems also include lockable cabinets in
which the entire PC can be stored.

Removable component protection systems provide data security by storing the data on
devices which can be physically removed from the PC and kept away from any user who might
want to steal or damage the data. The original PCs incorporated this protection scheme by
having all data stored on floppy disks which could be locked up when a user wanted to protect
data. More recent systems include entire disk drives which can be removed and large data
cassettes (e.g., the Bernoulli Box system) which hold more data than floppy disks. These
systems typically do not prevent access to a PC and can, in fact, allow a machine to be shared by
multiple users. They do, however, allow users to segment their data and prevent others from
accessing it, but they provide little protection from viruses.

DOMAIN ISOLATION

Domain isolation security systems are more complex than the physical systems and serve to
protect data files which are permanently stored on a PC from other users or programs being
executed. These protection systems generally attempt to protect passive resources, such as data

103

files stored on disk or in memory, from modification or destruction by active agents, such as
executing processes, without otherwise interfering with the execution of the process. They
provide mechanisms to allow a separation of data into private domains for storage, permitting
multiple users to share a single machine by isolating individual user's resources.

To provide this protection requires the concept of permitted vs. nonpermitted operations,
and this necessitates the abstractions of identifiable users and privileges. This is typically
accomplished by introducing the model of multiple users and ownership of resources into what
was originally a single-user system. Once this is done, it is possible to define permitted and
non-permitted actions by associating certain privileges, either implicit or explicit, with users.

Implicit Privilege

Of the types of domain isolations systems, implicit privilege are the simplest, conceptually.
They are designed to allow or disallow access to protected resources not by differentiating the
identity of an individual user from all other users but by associating access to a resource with
possession of some kind of token whose existence is coupled to the protected resource. For
these systems, the possession of the token implies that the user has the necessary privileges to
access the resource.

The chief examples of this type of protection system are those that use encryption to deny
nonprivileged users access to a protected data file. Here, the knowledge of the encryption
password amounts to possession of the token which implies that the user has the necessary
access privileges. Other examples of this type of protection system are smart cards,
cryptoignition keys, and various additional systems using things such as specially formatted
boot disks. For any of these, the protected PC may be otherwise accessible to any user, but a
subset of the data resources are stored in encrypted form and are accessible only to the set of
users with the knowledge of the password or the possession of the physical token which may
contain the encryption key.

Two types of encryption systems exist: direct and transparent. Direct encryption systems
are the simplest and usually store protected files by encrypting them with separate passwords.
Each time a user wants to access a protected file he supplies the corresponding password with a
command and the protection package performs the decryption (or encryption). These systems
require very few modifications to a PC's operating system, and the security package exists as an
application program.

Transparent encryption systems are more complicated and require either an additional
hardware board or a more complicated program. These systems require only an initial
password either typed in by the user or contained on a smart card or cryptoignition key. They
then automatically encrypt/decrypt all data references to the hard disk. The users are typically
unaware of the data encryption and only see plain text displayed on the screen. If, however,
they used a low-level I/O program to do direct disk access, they would find that all of the data in
a protected file was encrypted. These encryption systems require that all I/O operations to the
hard disk be interrupted, but this can be done without having to modify the existing operating
system.

104

Encryption systems are the simplest form of this category of protection, but there are others
which use passwords to limit access but that do not store the protected files in encrypted form.
These systems have software mechanisms which interrupt operating system access operations
and require the user to enter a password. This password is then compared against a stored list
of passwords and protected resource names, and, if a match is found, the operating system is
allowed to continue the operation. These security systems require the creation of password
storage data files, the user interface necessary to create and maintain the data files, and the
protection of those data files.

Explicit Privilege

Explicit privilege security systems are the most complex examples of the domain model.
They require a much more complicated program with low-level interfaces into the PCs
operating system and usually result in the implementation of a fully functional multiuser
environment, although usually only one user can be active at any time. Like the implicit
privilege group, they protect static data files from active users or processes. However, unlike
most of the implicit privilege systems, these types allow or disallow actions based on a specific
user identity. To do this requires the implementation of the double abstraction of privileges and
permitted/denied operations and the adoption of the discretionary access control security model.

To implement a multiple-user system requires the maintenance of complex data structures
and special files containing the information necessary to establish user identities (i.e., user
names and passwords). To assure security, this database must be protected from user access,
and a protocol of permitted access to this database must be established to allow users to be
added or removed. Further, to make use of this database, a login shell or other mechanism must
be added to verify and authenticate the identity of any user attempting to use the system. These
mechanisms must also be able to lock a user out if he fails to supply the correct identity
information.

In addition to identifying users, an explicit privilege system must be capable of permitting or
denying actions invoked by users. This necessitates the introduction of specific access
capabilities and the linking of those capabilities to identified users and protected resources.
This typically requires the addition of an access control database which contains a mapping of
user identities and protected resources coupled with the definition of specific access privileges.
To utilize the access privileges, a new operating system capability must be introduced which
allows access attempts to be mediated and the database to be checked before allowing or
disallowing the attempt.

In addition, a specially privileged user must be defined. This user, the system administrator,
or security officer must be provided with a separate command interface to the security system
and must be responsible for configuring the access control database and monitoring its
integrity. This user's command interface must allow access to operations which can add or
remove users and can grant or withdraw access privileges to specific resources. This user is
also responsible for routinely checking the security state of the system. This is usually
accomplished via audit data, another mechanism added with this type of security system.

There are two types of explicit privilege security systems, and they differ based upon the
relationship of access verification and access attempt. The two types are proactive and reactive.

105

Proactive Explicit Privilege

Proactive explicit privilege systems make access validity determinations before any
operations are attempted. They place the system in a prearranged state where the user is
preverified for all available operations. These security systems tend to use whole screen
windowing where actions are invoked by cursor positioning.

In these types of security systems, the access control database is checked and all access
mediation decisions are made when a user logs in or changes state. Access is controlled
proactively by the format of the interface presented to the user. The format of any screen is a
function of the user's access rights. The decisions about what operations a user can perform on
which data objects have already been made by the time the user has any control of the system.
Permitted actions and permitted data resources are usually pictorially displayed in a formatted
window.

The system administrator is responsible for configuring each screen format for each user
and then entering this definition into the access control database. This database will be
referenced each time a user logs in or changes state (e.g., exits an application program), and the
appropriate window will be constructed and displayed. The assurance of these systems rests on
prohibiting ordinary users from exiting the access controlled windows and establishing contact
directly with the PC operating system.

Reactive Explicit Privilege

The other type of explicit privilege security system, reactive explicit privilege, is the most
complex of all the PC security systems. These systems make access control decisions before
every operation invoked by a user or program running on behalf of a user is allowed to proceed.
They provide the most conventional security model where access control decisions are based on
user privileges and where the operations are being attempted on specific data objects. A fully
functional multiuser access controlled environment can be constructed, although most of these
systems can support only one active user at a time.

To implement one of these systems requires not only the same access control databases as
used by the proactive group but also much more complicated interfaces and modifications to the
underlying operating system. For these systems it is necessary to add the code to verify each
access request immediately before it is handled by the operating system and also to add error
and denial logic code paths to process rejected access attempts.

These security systems operate reactively and typically interface at the device driver level to
the PC operating system. In this way, they can capture data object reference operations just
before they are dispatched to the device driver and can perform an access control determination
based on the identity of the user, the name of the file object, and the type of operation being
attempted. If access is permitted and the operation is allowed, control is passed to the device
driver and the operation proceeds accordingly. If the operation is not permitted, error messages
can be displayed and audit records written. Control can be given back to the operating system
so it can exit via an error return path.

106

These are the most complex security access control systems, and they can be made to
operate in an unobtrusive manner with a small access monitoring kernel operating in the
background. Users interact with the operating system in a seemingly normal fashion once they
have logged on and supplied a validated user name and password. Only when an access attempt
fails for a security-relevant reason will the user be made aware of the operations of the security
system. Otherwise, the behavior of the protected PC will appear normal, although performance
may be affected to some degree.

Like the implicit privilege security systems, the explicit privilege systems require a means of
self-protection. However, the protection for these systems is more complicated since users are
granted full access to operating system commands and can invoke editors and debuggers, etc.
In order to protect itself and the access control data files, the explicit privilege system needs
complex mechanisms. This includes such things as data checksum validation to detect
manipulation attempts of both access control data files and the security critical regions of the
protection system itself.

The protection mechanisms may do other things such as monitoring the system clock to
detect attempts to deactivate the security system. This way, a determination can be made, albeit
after the fact, of a possible security violation and appropriate actions such as sounding alarms or
halting the PC can take place. In either case, the security administrator will be alerted that a
violation has occurred and can handle the situation accordingly.

A security system also needs to defend against the threat posed by debuggers by
understanding how they function and detecting their execution before any security violation can
occur. However, one threat that any of the domain isolation systems have less success in
defending against is that presented by computer viruses.

VIRUSES AND TROJAN HORSES

Viruses and Trojan horse programs present a difficult threat for PC security because they
necessitate a security model very different from the conventional and widely implemented
Discretionary Access Control (DAC) model. The reason for this is that the objective of DAC is
to protect data resources owned by one user from access attempts by a separately identified
user. This security model does not hold for viruses since the threat is not posed by another
user directly but indirectly via a program which contains a hidden bomb that can be triggered
when any user runs this program. When this rouge program is executed by an unsuspecting
user, it will have all the necessary privileges to damage or destroy all the data resources
accessible by the user.

To counteract this threat requires a security model different from the domain isolation
models where passive resources (files) are protected from active agents (executing programs).
This model must provide for the protection of active resources from active agents by the
security system specifically interfering with the execution of the agent itself. However, this is
difficult to do because of the problems inherent in differentiating normal program behavior
from aberrant program behavior. Fortunately, there are certain characteristics displayed by the
preponderance of viruses which can be used to defend against them.

107

Virus programs have been detected in a large number of forms and have been observed to
cause damage in numerous ways. But despite the number of types of viruses, they all share
certain properties and behaviors which can be defended against. First, viruses and Trojan horse
programs are usually transmitted to an unprotected machine as part of an otherwise useful
program. They are carried along and installed when an unsuspecting user loads a new program
on his machine. Second, the virus which has now infected the machine lies dormant until some
triggering event takes place. This event may simply be the executing of the infected program at
which point the virus can seize control and have unrestricted access, or it may be related to a
preprogrammed time or date. Third, once triggered and made active, these programs can enter a
propagation stage where they spread the infection to other programs on the PC. Fourth, while
in the active stage, viruses can cause damage by doing things such as deleting files, modifying
interrupt vector tables, disabling memory, decreasing system performance by introducing delays
after every operation, etc.

To protect a system against viral infection, it is necessary to interfere with the virus at one of
these stages by either preventing the virus from gaining entry to the system or by preventing the
triggering or propagation phases. Two types of antiviral programs have been developed for this
purpose: proactive antivirals and reactive antivirals.

Proactive Antiviral Programs

Proactive antiviral programs are self-contained user application programs which are executed
prior to the running of a viral infected program. Suspected programs are examined for any trace
of a virus, and, if any are found, the program can be prevented from being loaded. This can
interfere with the infection phase by detecting the presence of a virus prior to storing the
program and preventing the virus from being introduced into the PC. It can also interfere with
the propagation phase by preventing the infected program from being executed and thereby deny
the virus control of the system. Viruses are inherently benign until execution.

These types of antivirals typically search for some recognized pattern that indicates the
presence of a virus. They look for bit patterns, or tags, indicative of a particular virus, and they
alert the user if any are found. Proactive antivirals are easy to use and can be periodically run to
reverify the absence of any viruses on the system. These are also by far the most common type
of antiviral programs currently available and are often referred to as virus scanners..

The drawback to these antivirals is that they can only search for tags known to the author of
the particular antiviral program. They are not particularly successful in detecting new viruses.

Reactive Antiviral Programs

The other major category of antiviral protection systems are the reactive antivirals. Unlike
the proactive group, these programs do not search for recognized tags, or bit patterns, but
attempt to detect changes in the state of the system. This is done by either detecting some
change in the system state subsequent to the execution of a viral infected program or by
performing real-time activity monitoring. There are two distinct types of reactive antivirals:
signature checkers and behavior monitors.

108

Signature checking antivirals search for a telltale change in the system state subsequent to
process execution. They provide program and data file integrity checks that can determine if a
change has occurred as a side effect of a process execution. This usually requires the
establishment of a data record against which the system can be compared. This data record is
usually some sort of checksum signature of a program's image which can be checked before or
after program execution to detect modifications which might be caused by a virus.

If after execution a program's signature is found to be different, the program can be flagged
and brought to the attention of the user. This action will interrupt the propagation phase of a
virus since the newly infected program can be prevented from executing and further spreading
the virus. The source of the virus will still need to be isolated.

The advantage of these types of antivirals is that they can be effective against all viruses
which attack program executable images. They are not limited to being effective against only
those viruses known by the author as are proactive antivirals. The disadvantage is that they are
only effective against programs whose executable image is added to the database prior to the
introduction of a virus. If the checksum database contains the image of an infected file, these
antivirals will be unable to detect the virus although they can detect the propagation of the virus.

The other group of reactive antivirals are the behavior monitors which do real-time
monitoring of program activities. These are the most unusual antivirals, and they attempt to
differentiate normal program activities from those activities normally attributed to a virus. These
antivirals are usually permanently executing processes which run in the background (e.g., DOS
Terminate Stay Resident (TSR) programs) and observe other program's execution. This can
interfere with viral propagation and damage phases by detecting programs attempting to seize
certain system resources or performing write operations to system areas on the hard disk.

The advantage to behavior monitor antivirals is that they can be effective against large
numbers of viruses, not just those known to the author. They can also catch viruses early and
prevent the initial system infection. Their disadvantage is that they can often interfere with
normal program execution which may routinely perform I/O, or other system activity, which the
monitoring programs associates with viral activity.

CONCLUSIONS

Personal computers are known to have security vulnerabilities based on their architecture as
single-state machines. A number of different security models have been presented which are
capable of addressing these vulnerabilities and providing certain types of security ranging from
physically locking a PC to prevent theft, to providing a multiuser discretionary access controlled
environment, to monitoring program execution searching for computer viruses. Each of these
types of security systems are successful in addressing the particular security goal addressed by
them. They are less successful in addressing security issues outside their narrow focus.
Antiviral systems, in general, make no attempt to identify individual users or provide controlled
sharing of system resources. Physical protection systems provide little more than a way to lock
up a PC at night, and the domain isolation systems provide little protection against viruses.

109

What is clear is that no single security model is adequate for completely solving the security
problem in personal computers. To provide sufficient, meaningful data security for a PC, it is
necessary to understand the threats posed by the intended use and environment and then to use
some combination of examples of the types of security packages discussed here.

REFERENCES

CERTUS - User Manual; Foundation Ware Incorporated, Cleveland, Ohio.

Computer Security Subsystem Interpretation of the Trusted Computer System Evaluation
Criteria, NCSC-TG-009 Version 1,16 September 1988.

CRYPTOLOCK - User Manual; Commcrypt Incorporated, Rockville, Maryland.

FASTLock - User Manual; Rupp Corporation, Los Angeles, California.

Fred's Papers, Book 1; Fred Cohen, 1988.

INTRA-LOCK - User Manual; MIU Automation Incorporated, Markham, Ontario, Canada.

OnGuard - User Manual; United States Software Incorporated, Vienna, Virginia.

Security In Depth; Byte, June 1989; McGraw-Hill Inc., New York, NY

D«u Protection Physical Protection

Anwrictn Computer
Security
COMPSECU

Cortu.

Figure 1 IBM PC System Security

110

DEFENSE AGAINST COMPUTER AIDS
MR HORACE B. PEELE

Chief, Security Division
Communications-Computer Systems

Air Force Intelligence Command
San Antonio, Texas 78243-5000

Phone: 512-977-2767

ABSTRACT

Computer Aids? Everyone knows that the Acquired Immune Deficiency Syndrome, commonly
called AIDS, is a breakdown of the human body's immune system. Once contracted, a person

with AIDS is subject to infection of almost any disease or virus and may finally die of such simple
illnesses as the common cold. Everyone also knows that AIDS is reaching epidemic status.

Computer AIDS? Right! Why Not? Computers are manufactured without an immune system,
therefore they do not need a breakdown to be subjected to infection by computer security illnesses
to include the well known problems with computer viruses. So why not catalogue these computer
security illnesses as Computer AIDS? This paper addresses the six common security threats
which computer users must combat in order to have a good computer security program. Most users
are not aware that the computer they use is a threat to their privacy, job, and their status.

BACKGROUND

These six security diseases have already caused many users to suffer the attacks of Computer
AIDS, some with dire results. Each personal computer user must understand the results of these
security diseases if he or she wants to ensure that their jobs or privacy have not been violated by
such computer security diseases as the "PRIVACY INVADER". Research on these six security
diseases has been independently accomplished by many organizations and individuals. And some
measures have been independently developed to minimize the potentially embarrassing results of
their contamination. However, only the United States Air Force Intelligence Command has
developed a vaccination against all six diseases. This vaccination is known as "The Computer
Security Toolbox".

A PERSPECTIVE

How did we get started on this venture into computer security? Let's look back about three
years at the results of two true stories.

Case Number One. A fifteen year career officer within one of the military services made a
conscious decision to take an illegal copy of a government purchased word processing program
from his place of employment to his private residence, a simple copyright violation, also simple
theft. Later, he gave this same copy to a relative who in turn gave it to a neighbor further
compounding the copyright violation. Although it is wrong, the number of violations is not
important to this story. Here is what happened!

One illegal recipient (copyright violator), another military member, was reviewing the word
processing program with a binary editing capability probably in an attempt to change the
information about the licensee to himself and to eliminate reference to the "losing" military
organization. While doing so, this individual found classified information in a file after the
end-of-file marker. After considering the consequences, the individual reported the security
incident to the appropriate military authorities.

Ill

A formal investigation led to the original violator. The copyright violation was a bad enough
blemish on an otherwise perfect military career, but because of the security violation the officer
was offered a choice—either resign from the service or be subjected to a court-martial. The officer
resigned. Sad as this story is, many of us are guilty just like the officer. I wonder what
information we have taken home on diskette without knowing the potential damage we have done
to our national security. Are you guilty? Has this PRIVACY INVADER invaded your privacy?

Case Number Two. This is another similar story which involved an enlisted service member. It
seems that in the early days of government purchases of personal computers, the government did
not buy sufficient numbers of commercial off-the-shelf software packages to match the need of the
users. As a result, many people brought their own software into government office space, just to be
able to get the job done.

This dedication of our military to get the job done is admired, however; such action is within
itself another security violation. There is a policy against using personally owned systems, both
hardware or software, to do government work. It is illegal. And there must have been many
misuses of privately owned software, because this particular military department offered every
violator amnesty and instructed all such patriots to remove their private software from government
systems and to take it home! Now, here you are, a military member being told to take it home!
You obey orders! You take it home! You copy your software onto a government owned diskette
and you delete the original from the hard disk. You walk out of the office with carte blanche exit
privileges!!!

Sometime later. You hold a super high security clearance within your organization and as pan
of the personal security program, you must take a recurring lie-detector test in order to maintain
your clearance status. You are not wanting to fail such a test, it could mean the end of your job.
So when asked "Have you ever taken government property home for personal use?"; you answer
"Yes." You can't win for losing. They got you! And during the investigation, you are asked to
surrender all repeat all of your floppy diskettes for examination.

The examination revealed that you were clean of all problems except one! Remember that
brand new diskette used to take your personally owned software back home? Well, it contained
portions of a highly classified time sensitive intelligence report—national security information. The
PRIVACY INVADER strikes again! But, because the diskette had never left your possession and
since you had cooperated with the authorities, the investigator ruled in your favor. The diskette
probably had not been exploited so there probably was not an actual security compromise, just a
serious security deviation. Consider being a civilian working for a corporation with tons of
proprietary information on high tech developments, the result could be devastating! But how did
these two incidents happen?

DISCUSSION

What are these SIX computer security diseases—Computer AIDS? At this point the author
invokes the right of authorship. For the purpose of this document, these diseases are the
PRIVACY INVADER, MISS CLASSED, ILLEGAL OCCUPANT, DAA BLESSING,
CHEAP USER, and BIT DEATH.

PRIVACY INVADER

As casual computer users, we know the basic reasons for the CONFIG.SYS and
AUTOEXEC.BAT files. We know that they provide a communication path between the
application software and the Disk Operating System (DOS) and that without them the system will
not function. We also know that the statement "BUFFERS • 20" found in the CONFIG.SYS file

112

causes DOS to allocate 20 buffers of
memory each time the system is powered
up to be used for file management.
These buffers are usually 512 bytes of
memory and are used to control access to
all files used by the applications which
you activate. However, as casual users,
we do not understand exactly how DOS
uses these buffers. But for the purpose
of this paper the following conception
scenario is considered correct.

Misuse of these buffers by DOS
activates the PRIVACY INVADER
disease. Lets explain how this happens.
First of all, when a system is powered
up, the COMMAND.COM file is
automatically loaded into memory to
control the system. The buffers allocated
by the CONFIG.SYS file are used to
retrieve the COMMAND.COM file
from the disk and to load it into
operating memory. By the time you
begin using the computer, many of the
buffers will already contain residue
program executable code from the
COMMAND.COM file. Why? Simply
because DOS does not clear buffers after
their use.

So, lets say that the first application
program you activate is a word
processor. It gets loaded into memory
through these same buffers. By just
getting the word processor started the
buffers now contain bits and pieces of
the C0MMAND.COM and the ".EXE"
file of the word processor, possibly
within the same buffer.

Lets compound the problem. You use
the word processor to edit a letter to your
girl friend which you started yesterday
For discussion purposes, lets say that
your letter is exactly 400 characters in
length including the end-of-filc marker
as the 400th byte. You make a few
changes, save the letter back to its
designated directory, and print the letter.
You exit the word processor and return
to the DOS prompt.

Next you decide to make a minor
change to some control line in your
CONFIG.SYS file. DOS loads the
CONFIG.SYS file, all 100 bytes of it,
into the same buffer used to control the
writing of the 400 byte letter to its disk
location. Lets further complicate the
issue by saying that the disk is segmented
into 1024 byte sectors. What do you
think the PRIVACY INVADER has
done to both the original letter and to the
CONFIG.SYS file?

The 400 byte letter was written to a
1024 byte disk sector. DOS used the
contents of two contiguous memory
sectors to actually perform the physical
write to the disk. The letter on disk is
now trailed by 624 characters of residue
which was in these two contiguous
buffers at the time that DOS performed
the actual disk-write command. Be
assured that there are 624 bytes of
appended garbage or something after the
end-of-file marker because the disk must
write 1024 bytes. There is no variable
length write onto a hard-disk or diskette.
It is almost like cutting up documents
with scissors and pasting pieces of
different documents together to make a
new document.

Time also assists the PRIVACY
INVADER in its contamination process.
When the system was powered up,
chances are that all the information that
the buffers contained was code from the
COMMAND.COM file. But the longer
a system is used within the same
application such as a word processor, the
more the appended data problem or the
PRIVACY INVADER threatens. The

113

reason for this is simple. Once enough
of the buffers have been used for natural
language (English, French, etc.)
application, the more the contamination
tends to be in natural language.

Likewise, while buffers are being
used heavily to support graphic
applications, the more the contamination
tends to be in graphic language. This is
logical since the use of all buffers are
under DOS control.

While there are no rules established
on just how it all happens, there is one
rule to remember. The PRIVACY
INVADER disease attacks 100 percent
of all files with only one exception. Any
file which is the exact length as the
physical sectoring on disk escapes the
PRIVACY INVADER.

The affect of the PRIVACY
INVADER on any organization can be
described in many scenarios but let's
look at two. First the federal government
has tons of privacy act information on
unclassified DOS based systems.
Without safeguards on these systems,
privacy act data will become appended
data by the PRIVACY INVADER and
will unintentionally be given to others
who have no need-to-know.

The PRIVACY INVADER
guarantees the spread of its disease
through the routine exchange of
information by people using diskettes as
the exchange medium.

Likewise, in the classified world
where systems process only one
classification level, DOS will cause
classified material from different
documents to be "cut and pasted"
together, violating the need-to-know
principal and breaking classification
security rules.

At this point, there is the question as
to whether this disease should continue
to be identified as the PRIVACY
INVADER or a variant know as the
dreaded MISS CLASSED disease?

MISS CLASSED

Worse than the PRIVACY
INVADER disease on sensitive
unclassified systems, the DOS-based
MISS CLASSED disease occurs on all
systems which process information of
different classification levels. It is a very
serious security threat. It is a variant of
the PRIVACY INVADER in that it
contaminates in a similar manner.

However, in order to be categorized
as the MISS CLASSED disease, it must
concatenate information pieces, two or
more, from differing classification levels
together.

Hypothetically, lets say that System A
processes UNCLASSIFIED and
SECRET level data. It is simple using
the DOS COPY command to create a
disk file containing UNCLASSIFIED
data followed by SECRET data or a
SECRET file appended with TOP
SECRET residue.

And when the appended data is sent
by unprotected mail or courier to an
unauthorized environment, we
unknowingly violate security.

The MISS CLASSED disease is the
infection which contaminated the career
of the fifteen year military officer
mentioned earlier.

114

A picture is worth a thousand words
so lets demonstrate the problem--just
how does the PRIVACY INVADER
and MISS CLASSED diseases do their
dirty work? If you are not computer
literate, get someone to do the following
demonstration on a DOS system with a
hard drive.

Step One. Ensure that the system
prompt points to the root directory. Use
the DOS TYPE command -- type the
CONFIG.SYS file. Get a mental picture
of its contents or do a PRINT SCREEN
to capture the actual contents.
Remember that the TYPE command will
only display the number-of-characters as
recorded in the directory. It does not
display anything after the
number-of-characters and the true
physical end-of-file based upon disk
sectoring.

Step Two. Use a hex editor such as
Norton Utilities to view the CONFIG.
SYS file. While displaying the file in
natural language, notice the appended
data attached to the CONFIG.SYS file.

Compare the PRINT SCREEN
version to see just where the appended
data starts. Look at the screen close.
Try to identify the appended data. Again,
get a good mental picture of its content
or do another PRINT SCREEN. When
you are finished looking, exit the hex
editor.

Step Three. At the DOS prompt,
perform a COPY or the CONFIG.SYS
to an arbitrary file named XXX.XXX.
This creates a new file using the same
method which we use to transfer a file
from hard disk to floppy disk. Reenter
the hex editor and display the XXX.XXX
file. Look at the change in the appended
data. It will be different than that
appended to the CONFIG.SYS file.

There may be odd looking ASCII
characters which may be pan of some
".EXE" file. There may be natural
language words, sentences, etc. And
chances are that there will be pieces of

multiple files as indicated by multiple
end-of-file markers on the screen. If you
are in a classified environment, look
close, you may see the MISS CLASSED
disease right there on the screen!

You may continue to COPY files and
to use the hex editor to display other
files. Case-in-point, in normal DOS
systems every file will be contaminated
and you have seen how the PRIVACY
INVADER and MISS CLASSED
diseases spreads their infections.

Ill WHAT OCCUPANT

Every personal computer user has at
some time or other deleted a file of
something which they no longer desired
to keep. The DELETE command is
notorious for leading an individual to
think that the information is gone,
deleted from the disk—one of the most
popular misconceptions, far from the
truth! What really happens is that the
directory index is changed to reflect that
the file is now deleted by the simple
changing of the first character of the
name of the file in the index.

This logically saves much time in the
DOS disk management concept,
especially under the older central
processing units. It is the simplest and
fastest way possible to DELETE a file.
It eliminates the need of going through
the very slow and agonizing process of

115

overwriting the entire data file. The
person that originally conceived this
scheme needs to be complemented,
because it represented forward thinking
in-so-far as systems design but on the
other hand it represents a major flaw in
the security arena. What really happens
is that the data file is left intact on the
diskette or disk for further recovery until
DOS reassigns and overwrites the
physical disk space with some other file.
This could be immediately or it could
take some time depending upon the use
of the computer.

Stories of the 1960-1970 time frame
were circulated about the Soviets and
their front organizations. The stories
related to how they would buy up
obsolete systems and their magnetic
media from almost any company in the
California silicone valley area.

The systems they sought were from
progressive high-tech companies which
were themselves trying to stay up with
technology. High-tech companies
needed more processing speed to do their
work so they frequently replaced their
entire computer systems with faster more
efficient systems. And in order to be
efficient, these newer and faster systems
needed the support of faster disk drives
with more storage capacity. Floppy disk
drives have been upgraded from their
original 320KB of storage to the high
density of 2.88MB.

So as technology changed, companies
changed their hardware and software just
to keep up with technology and to
become more efficient.

The magnetic media used on the older
systems was often sold with the system.
It was reported that front organizations
would literally purchase all of these "old
systems" from the leading high-tech
companies.

Much of the reasoning was to acquire
high-tech information by exploiting the
magnetic media for valuable contents.
Who knows, maybe the United States

really didn't need a ban on technology
transfer. The transfer was happening on
the older obsolete systems by itself, we
were selling our high technology
information in simple "garage sales".

The ILLEGAL OCCUPANT disease
is another variant strain of the
PRIVACY INVADER in that it too is
spawned by DOS. It is simply the
residue left in the unallocated space on
magnetic media due to the method DOS
uses to delete (eliminate?) unwanted files
of information. It is hazardous to the
health of any organization which tries to
preserve its information. And since it
leaves a tale-tale (tell-tell) trail of clues
for the special computer crime
investigator, it can also be hazardous to
the health of individuals using computers
for illegal activities.

DAA BLESSING

As documented in the "THE
ACCREDITOR'S TOOLBOX"
published in the Proceedings of the 1991
Third Annual Canadian Computer
Security Conference, the Designated
Approving Authority (DAA) is the
individual authorized to accredit a
computer system and to issue the official
"approval to operate".

Since the DAA accepts security
responsibility for the operator of the AIS
and "officially declares that a specified
AIS or network will adequately protect
information against compromise", it is
therefore the DAA's responsibility to
approve and disapprove the use of
"shareware".

Approval is based upon the DAA's
review of the shareware program with
consideration to its value to operations
versus its potential threat. To minimize

116

the threat, the DAA usually requires the
original source code of the "shareware"
so that it can be examined for evidence
of malicious code, etc.

Once examined and approved for use.
it is then assembled or compiled by
government personnel and distributed to
its users using the government developed
object code. Each shareware package is
reviewed on a case-by-case basis. The
concern is that shareware programs are
usually developed without regard to
security rules and that such programs are
a prime means for transporting malicous
code such as Viruses and Trojan Horses.
Therefore, the general rule is that it is
illegal to use shareware unless it has been
obtained and released by the government
with approval of the DAA.

Shareware can also have a copyright
requiring a payment of some size to its
legal owner. However, many users do
not want to hear such rules especially if
it perceived that the use of the shareware
helps them "get the job done".

Every year, individuals exchange
thousands of shareware programs over
thousands of electronic bulletin boards.
Many of these work their way illegally
onto systems which have already been
approved to operate by the DAA. Not
only could an organization be held libel
for payment to its owner, but the risk of
not adequately protecting information is
a direct concern of the DAA. Without
adequate review and approval of
shareware, there are no assurances.
Some do not share the view that
shareware poses a major threat, and
maybe they are correct. However, that
judgement does not belong to the casual
computer user. The authorization,
proliferation, and use of shareware is the
DAA BLESSING Disease.

CHEAP USER

The CHEAP USER Disease is a
variant of the DAA BLESSING Disease
in that it is spread by human action. The
DAA BLESSING Disease affects

shareware software from shareware
vendors the same as the CHEAP USER
Disease affects copyright software from
commercial software vendors. The
fifteen year career officer had a case of
the CHEAP USER Disease. He simply
was too cheap to purchase his own
software. Owning a computer but
stealing software is just like owning a car
but stealing gasoline to make it work.

There have been several lawsuits
against organizations for open copyright
violations. One $12,000,000 suit was
supposedly won against the United States
government by three vendors who jointly

sued for violations within one military
service. One might argue that stealing
software is not a computer security issue
and that may be correct. Never-the-less,
it is a problem which has to be
recognized and managed.

BIT DEATH

The last of our diseases is given the
name "BIT DEATH DISEASE" It is
the result of those hundreds of computer
viruses which are currently infecting
millions of computers around the world
and killing their operations.

In his article "The Kinetics of
Computer Virus Replication" published
in the Proceedings of the 1991 Third

117

Annual Canadian Computer Security
Conference, Tippett uses a complex
mathematical model to exptrapolate their
reproduction characteristics. In
summary, his analysis simply states that
without effective measures to control the
problem, viruses will redouble in number
every 1.8 months.

Using his model, Tippett predicted
that approximately 12 million of the 80
million computers worldwide could be
infected just a short 48 months after the
beginning of viruses in 1987.

This prediction would place a major
threat to our systems now! In October
1989, International Business Machines
listed 28 unique DOS viruses. This
number grew to 250 by the end of 1990
and to 555 by the end of 1991. The
number of unique viruses is
exponentially growing.

At first I disagreed with Tippett's
findings. But recently by simply
observing the infection of systems within
a relatively closed and benign
environment such as the one where I
work, I have changed my mind. I know
that we are faced with a major problem
and that we have to take strong measures
to combat this major threat to our
computer systems and their information.

For example, the STONED VIRUS
has reached epidemic proportions on
some United States Air Force bases.

And while the STONED VIRUS is
more of a nuisance than it is destructive,
it is still disruptive and is costing
thousands of dollars just to remove it
from those systems that have been
infected. There are articles on the virus
threat to computer systems in many
newspapers and magazines. Therefore I
don't need to expand on this subject. It
is only necessary to ask -- Has the BIT
DEATH Disease taken its toil on your
organization, yet? What is the basis of
your program to protect your systems?
Is it adequate?

CONCLUSION

We have discussed six security related
problems which exist in the day-to-day
operations of personal computers.
Again, they are:

(1) Appended Data within a file
(2) Classification Violations
(3) Residue in Unallocated Space
(4) Unauthorized Shareware
(5) Copyright Violations
(6) The Spread of Viruses

Programs have been developed to
attack some of these problems, primarily
in the virus arena. Pick up any PC
magazine and you will find any number
of anti-viral programs for sale by their
vendors, some advertising a capability to
detect 1000 viruses — a nice round
number. One might think that the
vendors themselves are propagatind
viruses just to cash in on the action.

It is not easy to get people to
understand the threat of these diseases to
themselves, their job and their status.
Likewise, the job of containing these six
diseases is not easy because it is not easy
to sell something that is seemingly not
productive.

In a manual operation, it is not
cost-effective nor is it a simple process to
minimize these threats. It is extremely
manhour intensive. Therefore, an

118

effective program to detect and minimize the threat of these diseases can only be done through a
cost-effective time-reducing program utilizing automation.

The responsibility of looking for and detecting these day-to-day computer security diseases has
to be the responsibility of one individual within each organization. By whatever name, that person
is the Computer Security Officer. It is his/her job to manage the computer security of an
organization and in doing so, to minimize the threat of all these diseases.

In the beginning I mentioned "The Computer Security Toolbox" which was developed by the
United States Air Force Intelligence Command and that it was a vaccination tool against all six of
these diseases. I will not document the toolbox and its content in this article since it contains some
programs which must be protected against piracy. I also don't want the private contractors to get
too rich by duplicating our work. However, a live demonstration will reveal its capabilities. I hope
you enjoy the demonstration.

119

E-Mail Privacy and the Law

Christine Axsmith, Esq.
ManTech Strategic Associates

Introduction
A strong privacy policy protects the rights of employers and employees. Clarification
and communication of that policy to employees protects against the uncertainty of
the direction the law might take in the future on this issue.

In a classified environment, E-Mail monitoring is justified by concerns of waste,
fraud, abuse, and espionage, any of which could lead to a criminal investigation.
Privacy standards are determined by the Fourth Amendment to the Constitution,
and are applicable to all Americans. The basis for these standards is the reasonable
expectation of privacy test. That test is: 1) previous practices by the government
employer, 2) written policies outlining the extent and manner that an employee can
expect his or her privacy to be reduced, and 3) notice to the government employee
of what privacy he or she can expect in the workplace. Privacy standards are also
established by statute, and the ones applicable to federal employees are sometimes
qualified by national security.

Other problems can complicate E-Mail monitoring, such as civil lawsuits by
employees claiming and invasion of their privacy. The federal statutes discussed in
this article are: The Privacy Act1, and the Electronic Communications Privacy Act2.
Common law tort is a basis for a civil suit as well. An effective way to handle privacy
issues is to develop a thorough privacy policy which will spell out for the employee
the amount of privacy that can be expected in their federal workplace. A privacy
policy will give notice to employees that affect their expectation of privacy which
will influence a court when it decides if the employee claiming the privacy invasion
was reasonable.

Potential civil lawsuits will be reduced by informing workers of the privacy policy as
worked out by management. In addition, information obtained as a result of E-Mail
monitoring will be available for use in criminal investigations.

This article does not suggest only one approach to an E-Mail policy. It outlines
considerations in determining an E-Mail policy, and makes several suggestions to
help' federal agencies clarify their privacy policy regarding E-Mail, particularly in a
classified environment.

This area of law is not settled, and the final answer depends in large part on future
court decisions. Between now and then, privacy concerns will need to be addressed
by your organization, and this article will discuss the background of the legal issues.
Specifically, this article addresses electronic mail privacy in a classified environment.
A conservative approach is taken in this article. Another term to use would be
"cautious." Since the rules of law in this area are so unsettled, covering all of the
angles is important to establish a policy that will withstand a court decision not
necessarily sympathetic to national security interests. It is never far sighted to

1. 5 U.S.C. §552a

2. 18 U.S.C. §2510

Copyright 1992 Christine Axsmith 120

assume that the courts will agree with a certain perspective consistently and
exclusively.

Problems With Privacy

Alana Shoars was an E-Mail Administrator for Epson America. One day she came
into work discovered her supervisor printing our E-Mail messages between other
employees. In her position as E-Mail Administrator, she often assured other
employees that the messages they sent were private, and that the privacy would be
respected. Ms. Shoars was terminated a day after she questioned the practice by the
company managed.

Within the last year or so, employees have begun to sue their employer for reading
the E-Mail messages of its employees4. Since that time, many complicated questions
have been raised about the right of employers to read E-Mail resident on corporate
computers. The issue has primarily been raised in wrongful termination claims. In
California, a recent change in the law has made the standard wrongful termination
claim less attractive to litigators, or at least less profitable. Damages for wrongful
termination claims are now limited to lost wages^. Claiming an invasion of privacy
can allow the employee to claim damages other than lost wages.

None of these lawsuits involve federal employees. None of them involve a classified
working environment. Nevertheless, the ramifications of recent developments in
litigation are too serious to ignore. Will employees have the right to sue their
employer for monitoring their E-Mail messages? Does that in turn mean all E-Mail
monitoring could be effectively eliminated in the future? What is the current status
of the law on this issue7

Serious questions need to be raised and addressed in privacy policies of government
employers. Legally, questions on E-Mail privacy have not been addressed by the
courts. Often, years go by before a definitive answer to specific issues, such as E-Mail
monitoring in a classified environment, would be addressed. Before then, decisions
must be made on what a privacy policy on E-Mail will include and what it will not.

Background

Privacy as a legal issue can be divided into two parts: civil and criminal As a civil
issue, a lawsuit could be based on state or federal law. However, state law does not
apply to a federal workplace. The cases filed against Epson America and Nissan
Motor Company are based on California law, which cannot be applied to a claim by
federal employees. There, discharged employees are claiming an invasion of privacy
because they were terminated based on the content of the employees' E-Mail
messages.

Criminal Law

As a criminal issue, reasonable expectation of privacy involves the Fourth Amend-
ment and the warrant requirement for searches and arrests. If a person's reason-

3. NY Times, Dec 8, 1991; Section 3, "Do Employees Have a Right to Electronic
Privacy", by Glen Rifkin

4. National Law Journal, Sept 16, 1992; "The Outer Limits", by Rosalind Resnick

5. LA Times, Oct 26, 1991 Saturday, Home Edition Part A, Page 1, Column 1; "Job
Loss Suits Take a New Twist", by Terry Pristin

Copyright 1992 Christine Axsmith 121

able expectation of privacy is violated, the evidence found as the result of that
invasion into privacy, cannot be used as a basis for an arrest.

Privacy encompasses criminal and constitutional aspects regarding the Fourth
Amendment to the Constitution of the United States. Specifically, they relate to
search and seizure of evidence, and arrests pursuant to a warrant. This article does
not address the issues surrounding admissibility of E-Mail messages at a trial as
evidence. Even if the information discovered during E-Mail monitoring is not
admissible as evidence at trial, E-Mail most likely could be used as a basis for an
arrest or search warrant if the suggestions of this article are followed. Results of E-
Mail monitoring can be used in future criminal action if illegal activity is discovered.
A final legal answer about the use of information obtained during E-Mail
monitoring has not been given by the courts.

The question here hinges on the reasonable expectation of privacy of the individual
who is the subject of the search. "Computers" as such, are not the issue. The issue is
the reasonable expectation of privacy of a federal employee at work under the
Fourth Amendment standards created by the courts. Reasonable expectation of
privacy protects people not just places^. What constitutes a reasonable expectation
of privacy for E-Mail users in a national security environment is still undecided. One
day a clear definition may exist, but no one today can foresee a Supreme Court
decision made tomorrow.

If the reasonable expectation of privacy of the individual whose E-Mail is being
searched is violated, the evidence obtained as a result of the privacy invasion could
be excluded at trial, or an arrest based on that information could be invalidated. If a
person's reasonable expectation of privacy is violated, the intrusion becomes a
search and without a warrant, the information discovered by the intrusion cannot be
used as a basis for an arrest warrant. So the concern becomes one of ensuring that
whatever information is gained can be used as an adequate basis for a search or an
arrest warrant. Currently, courts recognize a reduced expectation of privacy for
government employees in the workplace. The person must have a sincere expecta-
tion of privacy and that belief must be reasonable in our society for the courts to
recognize that a "reasonable expectation of privacy" exists in a legal sense. The issue
of a public employee's reasonable expectation of privacy was addressed by the
courts in the seminal case of U.S. v. SPEIGHTS?. In that case, a police officer stored a
sawed-off shotgun in his locker. In the course of investigating a breaking and
entering ring, Speights' superiors received information that he stored an unregis-
tered weapon in his locker. Eight lockers were searched, including Speights'. His
locker was secured by a personal lock and a police-issued lock. Speights locker was
opened without a warrant. There was no regulation on the use of private locks, and
no regulation or notice to the ranks that the lockers might be searched

The court found that Speights had a sincere expectation of privacy in his police
locker. To decide whether the government employee's expectation of privacy was
reasonable, the court weighed several factors. The factors the courts rely on to
determine if the expectation of privacy was reasonable are: 1) previous practices by
the government-employer, 2) written policies outlining the extent and manner that
an employee can expect his or her privacy to be reduced, and 3) notice to the
government employee of what privacy he or she can expect in the workplace. The
rules on reasonable expectation of privacy in the workplace for federal employees

6. Katz v. United States, 389 U.S. 347 (1967)
7. United States v. Speights, 557 F. 2d 362 (1977)

Copyright 1992 Christine Axsmith 122

differ from and are less stringent than the rules on reasonable expectation of privacy
for private sector employees. The practical effect of this difference is that many of
the cases now publicized involve private sector employees and do not use the same
rules that would be used in a case involving a federal employee, especially in a
classified environment.

In a national security environment, the reasonable expectation of privacy for em-
ployees is reduced even further than for regular government employees. But since
the law in the area of E-Mail privacy is far from settled, clarifying the situation to the
employees is important. In the past courts have weighed heavily the employee's
subjective idea of reasonable expectation of privacy when the policies of the govern-
ment-employer have not been clarified. Merely because the intrusion into privacy is
possible (e.g. that the system manager can read all messages on the system) does not
necessarily reduce the reasonableness of the employee's expectation of privacy.

The ability of the system manager to read everything on the system does not mean
the user of the System has no reasonable expectation of privacy. To a system mana-
ger, or to anyone familiar with computer systems this interpretation may seem
illogical. If a person has access to the entire system, then it would seem that any
privacy expectations on the part of a user would be unfounded.

However, the definition of "reasonable" that counts is the definition adopted by the
courts, who will probably consider the perspective of the user, at least in part.

Certain definitions of "reasonable expectation of privacy" have been attempted
regarding E-Mail privacy, but none of them apply to a federal government computer
system. The ruling in Speights is the current legal test used to determine the
reasonable expectation of privacy held by a federal employee at work.

The Electronic Communication Privacy Act8 also establishes criminal sanctions for
interception of electronic communication. The statute calls for imprisonment of not
more than five years, a fine, or both. An exception is granted for someone acting
under "color of law" if one of the parties to the communication has given prior
consent. Another exception is where the one intercepting the message is a party to
the communication, or one of the parties to the communication has given consent to
such interception, which does not apply if the purpose of the interception was
commit a criminal or tortious act.

Civil Law

While not applicable to a federal privacy claim, the legal trend in California is
interesting because similar claims may very likely be filed in other state jurisdictions,
and possibly in federal court in the future.

Federal law governs in a federal workplace. Several federal laws address privacy,
such as the Privacy Act9. The Privacy Act concerns information that the federal
government gathers and keeps concerning individuals, but in the language of the
act, the right to privacy is qualified by national security concerns. The Privacy Act
also limits its scope to "a system of records," and its applicability to an E-Mail system
is unsettled. Even if it did apply, however, the Privacy Act also excepts "files the
disclosure of which would clearly constitute a clearly unwarranted invasion of
privacy." The Privacy Act itself is part of a larger piece of legislation called the

8. 18 U.S.C. §2510
9. 5 U.S.C. §552(a)

Copyright 1992 Christine Axsmith 123

Administrative Procedure AcrJO. The Privacy Act specifies what information should
be disclosed to the public, and how that should be done to protect individual priva-
cy. Nevertheless, neither exception has been irrefutably applied to the content of
government employee's E-Mail. As long as the courts see that some right to privacy
exists, there is a basis for a civil privacy lawsuit.

Electronic Communications Privacy Act extends existing privacy protection for oral
and wire communications to electronic communications. Under the ECPA, only if the
sender or recipient of an electronic message gives permission, and the computer
system allows access to a computer outside the corporate computer, can an
employer read the employee's E-Mail. An exception to the privacy guarantees of the
ECPA exists for conspiratorial activities that threaten the national security. So there
is a national security exception to this statutorily defined right to privacy as well.

Lawsuits will arise in the future on the issue of E-Mail privacy, giving rise to poten-
tially larqe legal expenses. Notice to users of their privacy rights will make the users
aware of their situation and will hopefully conduct themselves in accordance with
that knowledge. Also, "notice" will reduce the reasonableness of a user's subjective
expectation of privacy, when prior notice was given to the opposite effect. The
likelihood of a successful lawsuit by federal employees for E-Mail monitoring, using
the ECPA is very slight because of the national security exception written into the
language of the ECPA.

Common law tort is another basis for a civil suit for the federal employee. The legal
standard used is the same for this cause of action as it is for "reasonable expectation
of privacy" in a criminal context. The same factors from SPEIGHTS apply, i.e. notice,
policies of the government employer, and the practices of the government
employer. A court will balance these three factors, deciding whether the employee
had a sincere expectation of privacy, then whether that expectation was reasonable
in our society. If the answer to botn issues is yes, then the employee will win the suit.

Suggestions

Most legal departments can prepare language for a privacy notice declaring there is
no reasonable expectation of privacy on the computer system. Until the courts inter-
pret that language to mean precisely that regarding E-Mail privacy for government
employees, the viability of such a solution is doubtful because the courts most likely
will weigh the written policies of the government employer and previous practices.
Notice adequately addresses the notice requirement to reduce the reasonable
expectation of privacy of the employee-users. However, the courts may decide to
balance several factors when the issue is decided, of which notice may be only one.

For a conservative approach to help ensure that a privacy policy will stand in the face
of future legal decisions, a strongly worded notice should be combined with policies
reflecting the approach taken by a particular agency to the privacy in its E-Mail
system. These policies should be clear and thorough. Following through on these
policies should be the actions of the agency

Department policies should outline E-Mail auditing, how often it will be done, who
can expect to have their E-Mail read, and who has the authority to read the E-Mail of
others. Strongly worded notice to the user delineating the extent of privacy on a
computer system is only one factor a court could use in deciding whether or not
perusing the E-Mail of others is permissible in a classified environment. But the

10.U.S.C. §§551 etseq.

Copyright 1992 Christine Axsmith 124

effect of the notice would be strengthened by clarification and communication to
users through department policies and practices. The legal standard to date
depends in large part on the policy of the government employer, and how that
policy is communicated to the employee whose privacy is being reduced. A policy of
reduced expectation of privacy can be further strengthened by a written statement
of who in the organization has the right to review other people's E-Mail and who
does not.

This article suggests a conservative approach in protecting national security interests
in the long run. The aim of these suggestions is to help ensure that information
gathered through the monitoring of E-Mail will be available as a basis for an arrest
or search warrant when the issue is decided by the courts, and to forestall potentially
large legal expenses in the future from civil lawsuits.

Clarification and communication of a privacy policy by notice to the user, written
policies, and practices will prevent misunderstandings and lawsuits in the long run.

Copyright 1992 Christine Axsmith 125

ELECTRONIC MEASUREMENT OF
SOFTWARE SHARING FOR COMPUTER

VIRUS EPIDEMIOLOGY

Larry cle La Beaujardiere
Department of Computer Science

University of California
Santa Barbara, California 93106

Abstract

Mathematical models in computer virus epidemiology employ simplified assump-
tions about how software is shared among groups of users. These models would ben-
efit from accurate data describing actual software sharing patterns. An algorithm
is presented which records the topology of the software interchange network. The
algorithm proceeds as an "epidemic" computation, and is forwarded by users along
with a replicated database when they share software.

Introduction
The word virus to describe unwanted computer code was first used by novelist David

Gerrold in When Harlcy Was One, in 1972 [1]. The term was formally defined by Fred
Cohen in 1983. Informally, it is a computer program that alters other programs to include
a possibly modified version of itself [2].

Viruses pose a. significant threat to the computing community, especially given the
continuing proliferation of personal computers and associated software applications. As
of 1989, some 76 distinct viruses which operate on a variety of personal computers had
been identified. Dozens of variations of these viruses were also identified. These viruses
threaten the integrity of users' files and programs, and affect the availability of computing
resources. Furthermore, considerable time and money is spent by individuals in preventing
and recovering from viruses.

In principal, a computer virus can spread to the transitive closure of information flow
[2]. The techniques of mathematical epidemiology, as traditionally applied to the study of
biological disease, have been used to study this spread. However, epidemiological models
suffer from the effects of simplifying assumptions about the patterns of software sharing
among users. There remain doubts as to the accuracy of these assumptions; as a result,
the research community has called for formal study of the software interchange process.

126

The procedure presented in this paper would produce accurate and detailed measure-
ments of the topology of software sharing. Our proposed method depends upon the active
participation of the user involved in exchanging software. It is administered by some
agency or authority, which is responsible for initiating and distributing the procedure,
and collecting its results upon termination.

The algorithm functions as an epidemic computation, much like viruses themselves.
Users who share software via, removable media are instructed (requested) to also include
the proposed program and an associated data file. The data file is an element of a repli-
cated database, and contains a representation of a directed subgraph that is a component
of the software sharing network. The recipient of the shared software runs the algorithm
on his machine, and thereby includes himself in the network.

If the transported algorithm finds that it is making the first visit to a given machine,
it generates a name for the machine and initializes a local copy of the data file. The
local data file will then represent a graph with one node: the destination machine. The
algorithm merges the graph that was transported from the source node with the existing
graph on the destination node. In this manner, the algorithm and database are distributed
throughout the population, and a picture is built, of the topology of software sharing.

At some point (perhaps in response to size constraints), the algorithm terminates. The
many results are sent by cooperating users to the administering agency, to be digested,
reconciled, and analyzed by virus epidemiologists.

For ease of exposition, and to enhance user acceptance of the procedure, a catchy
name has been adopted: SWIMS the Soft Ware Interchange Measurement System.

In subsequent sections, we present the motivation behind a proposal of this kind.
Current epidemiological models are presented, and we discuss how these models could
benefit from SWIMS. The procedure is explained, and other epidemic algorithms are
mentioned.

The implementation of SWIMS presents specific challenges. These are discussed, and
a modest approach is suggested to initially test the concept among a small population.
SwiMS is geared towards sharing via removable media; the measurement of other exchange
modes is discussed.

Motivation

Since the computer science community is likely to view our proposal as controversial,
some motivating factors are discussed.

It is axiomatic among computer security specialists that awareness of threats is the
first step in ensuring a secure environment. The SWIMS procedure will involve the general
population of computer users in the process of understanding computer viruses. With
features to graphically display the evolving view of the interchange network, SWIMS will
foster a strong consciousness of the far-flung community of users in which we are members.

There exist many approaches to virus defense at the level of the individual computer
[1,3,4]. However, Cohen has shown that prevention of infection can only be guaranteed

127

by limiting information flow or functionality. Further, he has demonstrated that, in
general, the problem of virus detection is undecidable [2]. Thus, the partially effective
response at the level of the individual should be supplemented with a response at the
global level. Accurate epideiniological models can help formulate a global response—the
proposed algorithm could serve as its backbone.

The most obvious way to collect data about software sharing is through printed surveys
distributed to a group of users. The problem with such a survey is that it would be
impossible to integrate the results into a comprehensive view of the topology of sharing.
Individuals could describe how often and how distantly they share, but one could not
get a sense of the width and connectivity of localized sharing groups. The connectivity
between sharing clusters, and their intersection, would not be evident in the data.

Epidemiological Models

The goal of modeling in computer virus epidemiology is to gain insight into the large-
scale behavior of viruses. This includes an understanding of what fraction of the popula-
tion is infected at a given time, the duration of the epidemic, the spatial distribution of
infected individuals, and the probability that a given individual is infected.

The population under study is divided into classes of individuals {it, computers),
according to whether they are susceptible to infection, infected, or removed (cured)
[5]. In the simplest models, denoted SIS (susceptible—>infectcd—^susceptible), the re-
moved state does not appear. A more likely model for the computer domain is SIR
(susceptible—>infected—» removed), in which users who have been infected by viruses adopt
protection procedures and anti-viral software. The true picture probably lies somewhere
between the extremes presented by these two approaches [6J.

An epidemiological model attempts to describe the transmission process. Most of
the existing work in computer virus epidemiology is based upon a homogeneous mode
of transmission [6]. This means that any individual is equally likely to infect any other
individual in the population. Software sharing is actually a heterogeneous process, since
a user typically has a group of contacts with whom she frequently shares. She exchanges
outside this group relatively infrequently.

Thus, some spatial or logical structure is best applied to the model, to capture the
notion of proximity or locality between users (proximity refers to the likelihood that two
individuals will share software, and does not necessarily imply physical propinquity).

The most comprehensive work along these lines is by Kephart and White, of the IBM
T. J. Watson Research Center [(>]. One of their models is based on a directed graph, in
which each vertex represents an individual computer, and all of the N{N — 1) possible
edges have the same probability of being included in the graph. The edges and vertices
are associated with an infection rate and a cure rate, respectively. Although this model is
heterogeneous, it does not model well the proximity relationship, because every possible
edge has an equal chance of inclusion.

To capture the effect of proximity, Kephart and White present a hierarchical model

128

in which the population is logically organized into a tree structure. The individuals are
represented at the leaves, and the probability that one individual infects another is a
function of the number of levels that must be climbed to reach a common ancestor.

The authors make simplifying assumptions which affect the degree to which the hier-
archical model reflects actual sharing patterns. The tree is assumed to be binary, and the
rate of infection between nodes decreases geometrically as they are increasingly removed
one from another.

A cellular automata model is also employed. It is highly oriented towards assessing the
effects of locality in sharing. The susceptible neighbors of a given individual are located
in a square block of cells centered around the individual, and a uniform infection rate is
applied to all cells in the block.

The Need for Refinement

Kephart and White have provided an important foundation with these models. However,
the}' have pointed to a need for the subsequent development of their complexity. They
state that the results obtained from their graphical and cellular models represent the
extremes of the effect of locality in program sharing, and that the actual situation may lie
somewhere in t lie middle. They have called for more research into actual sharing habits,
and for a centralized authority to collect virus reports. The SWIMS procedure presented
in this paper addresses these needs.

The directed graph model uses a uniform distribution of edges. However, sharing
probably involves local well connected clumps of users, with fewer connections between
users in different clumps. SWIMS data could be used to determine the appropriate non-
uniform distribution of edges in the graph.

For the hierarchical model, the SWIMS results could be used to determine the branching
factor of the tree as a function of tree level. An improved relation between infection rate
and tree level could also be derived.

The cellular automata model could be refined by imposing a non-uniform distribution
of the infection rate over an individual's neighborhood. Also, neighborhoods could be
constructed with varying shape and size.

However, without real-world data on the program interchange network, specifying
these improvements to the model is dangerous speculation.

The SWIMS Procedure

SWIMS is billed as a proccduix rather than an algorithm because it relies on user
participation. Another participant is the central agency that initiates the procedure and
collects the results. Since the goal is to measure software sharing, we directly associate
the procedure with the act of sharing: when a. user shares software with another, he also
shares the SWIMS program and associated data file.

Once at his machine, the recipient runs SWIMS. If his machine has never been exposed

129

to SWIMS, the program will copy itself onto his hard disk and initialize the required data
fdes. Thus, a database containing one node is created. SWIMS will then merge the graph
that came from the source machine with the graph at the destination machine, to update
the combined picture.

We introduce the term epidemic computation to describe the operation of SWIMS,
since it involves attachment to host individuals and replication throughout the population.
Thus, it resembles an actual computer virus, with the important difference that replication
occurs at the mutual discretion of both users involved. It differs from the usual notion of
a distributed computation in that the message passing channels are not predefined.

The three steps of SWIMS are summarized:
• Initiation: This takes place at the launch sites chosen by the administering agency,

or when the algorithm propagates to a new node. SWIMS depends on unique iden-
tifiers for each node. This is best accomplished by letting the user choose a 20-
character alias for himself. Uniqueness of id's can be ensured by concatenating the
alias with the current system time.

• Propagation: At the source of software sharing, the program and database are
copied by the user onto removable media. At the destination, a merge on the two
directed graphs is performed, with nodes in common identified, and edges placed
accordingly. The resulting graph serves as the updated database for the destination
site.

• Termination: The procedure will automatically notify the user that it should
terminate in response to some predefined condition. This could be that the data
file has exceeded a specified size, or that the system clock has advanced past a
termination date. At this point, users mail their data file on a diskette to the
central agency, with the proviso that the agency will return the diskette. A reward
incentive could be employed to maximize cooperation.

Challenges Posed by SWIMS

Tampering

Because of its wide distribution, SWIMS would be a likely carrier for a virus attack. This
problem could be mitigated by employing some standard virus defense techniques [2]. The
algorithm could be offered as source code in a variety of popular languages. Since the
bulk of the computation is a. straightforward graph merge operation, the code would be
relatively short and amenable to quick inspection.

Another approach would be to document a calculation of the checksum of the program,
to be distributed on printed matter. Users could verify the program by comparing the
expected and observed checksums.

Finally, SWIMS could be run in conjunction with a modified command interpreter that
requires explicit authorization for any modification of data objects. This is an imperfect
method for virus defense in general, since it generates too many "false positives" of virus

130

detection. The user is soon conditioned to authorize all changes [4]. However, when used
with only a few programs (eg, SWIMS), this method can help defeat viruses.

Another weakness is the potential for sabotage of the SWIMS data file. At worst,
this would create a set of subgraphs that incorrectly reflect sharing patterns. Statistical
techniques could be applied to characterize SWIMS data upon collection, and outliers could
be discarded.

These dangers will be minimized if the procedure is introduced in a smaller, more
cohesive community than the general population, such as a University or a small town in
the Midwest.

Big Brother

Americans are famous for resisting attempts by any agency to accumulate and centralize
information about the population. Their fears should be lessened by the fact that users of
SWIMS are permitted to identify themselves in the replicated database, and can therefore
choose aliases. With a proper public relations campaign, the computer community could
be encouraged to take part in this great National experiment.

Size Complexity

The size of the data file is an issue, since we can expect SWIMS to collect thousands
of nodes in its graph. Cohen has claimed that a typical PCd^ased virus can spread to
thousands of computers in a matter of weeks [4]. The storage requirements for the graph
is 0(1:). where1 E is the number of edges. In a complete directed graph, this is 0(N2).
However, the density of edges in the software sharing graph is likely to be sparse, bringing
the size closer to O(.Y). The ideal representation of the graph on disk is as a list of edges,
organized by the node from which they are exitant. Unbounded growth of the data file is
checked by algorithm termination.

A Vision for the Future

All of the foregoing challenges, if left unaddressed, conspire to diminish user acceptance
of SWIMS. However, SWIMS appears more palatable in conjunction with a revolutionary
vision of personal computing for the future. In this vision, the typical user is more savvy
about threats to compute!' security. SWIMS helps to increase his awareness. The future
user is accustomed to being involved in electronic networks. As on-line data connections
into the home are increasingly utilized for mail and news delivery, SWIMS acts as a similar
network for standalone computers. The proposed epidemic computation can contribute
beyond providing data for epidemiological research. Given widespread use, it could serve
as the basis for a protocol which tracks the source and progress of viruses. It could identify
and warn individuals who are at high risk from a particular virus attack.

131

Other Software Exchange Modes

SwiMS is meant to measure software interchange via such removable media as diskette
and cartridge tape. More direct means of sharing should also be measured in support
of research in virus epidemiology. These sharing modes are more easily analyzed than
sharing by floppy.

It is not clear to what extent software obtained from bulletin boards and news networks
contributes to viral spread. Although these transmission means are always mentioned by
virus experts, Cohen has asserted that only one widely known virus has ever been launched
through a bulletin board [4]. Since this transmission mode involves on-line data access,
and possibly subscription to a paid service, it would be feasible to establish an auditing
procedure to directly measure frequency and location of use.

Viruses have also been known to spread via mass distribution. The MacMag virus
was shipped with about 10,000 shrink-wrapped copies of Aldus Corporation "Freehand,"
[7][4]. In 1989, the AIDS virus was shipped to tens of thousands of users on a PC mailing
list1 [4]. This kind of virus attack is anomalous. It should not be incorporated into
epidemiological study.

Other Epidemic Computations

SwiMS is not the first algorithm that proceeds as an epidemic through a system of
separate computers. Researchers at the Xerox Palo Alto Research Center were the first
to describe worm programs [1]. They used a worm to perform hardware diagnostics of
Ethernet interfaces on a network of workstations [8]. They refer to their software system
as programs which span machine boundaries. Other investigators at Xerox PARC have
used randomized algorithms to distribute updates of a replicated file. The updates spread
as an epidemic with a limited lifetime; infection ceases when too many attempts are made
to reinfect updated nodes [9].

As early as 1964, an epidemiological model was applied to the transmission of ideas.
The method was intended to help determine when an information retrieval system should
be introduced as a tool to a population of scientists [10].

The existence of these other epidemic computations should help justify SWIMS to the
personal computing community.

Conclusions

We have described the need for additional research into computer virus epidemiology,
and demonstrated that current models of program sharing suffer from oversimplifications.
Our proposed procedure, the Soft Ware Interchange Measurement System, responds to
these needs by providing comprehensive data on software exchange. To ease the accep-

*[4] and [1] contain contradictory descriptions of the AIDS virus.

132

tance of this controversial proposal, we have presented a number of ways to deal with the
challenges it poses.

An attempt has been made to incorporate SWIMS into a vision of the future of per-
sonal computing—a future characterized by a knowledgeable user who is cognizant of her
presence in a global computing network.

References

[1] E. II. Spafford, K. A. Heaphy, D. J. Ferbrache, "A Computer Virus Primer," Com-
puters Under Attack: Intruders, Worms, and Viruses, P. J. Denning, ed., Addison-
VVesley Publishing Company, Reading, MA 1990.

[2] F. Cohen, "Models of Practical Defenses Against Computer Viruses," Computers
& Security, Vol 8, 1989.

[3] M. II. Brothers, "Computer Virus Protection Procedures," Compxders Under At-
tack, 1990.

[4] F. Cohen, "Implications of Computer Viruses and Current Methods of Defense,"
Computers Under Attack, 1990.

[5] H. A. Lauwcrier, Mathematical Models of Epidemics, Mathematisch Centrum, Am-
sterdam 1981.

[G] J. 0. Kephart and S. R. White, "Directed-Graph Epidemiological Models of Com-
puter Viruses," 1991 IEEE Computer Society Symposium on Research in Security
and Privacy, May 1991.

[7] II. .J. Highland, "Computer Viruses—a Post Mortem", Computers Under Attack,
1990.

[8] J. F. Shock and J. A. Hupp, "The 'Worm' Programs—Early Experience with a
Distributed Computation," Computers Under Attack, 1990.

[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.
Swinehart, and D. Terry, "Epidemic Algorithms for Replicated Database Mainte-
nance," Operating Systems Review, Vol. 22, 1988.

[10] W. G off man and V. A. Newill, "Generalization of Epidemic Theory: an Application
to the Transmission of Ideas," Nature, Vol. 204, October 1964.

133

ENFORCING ENTITY AND REFERENTIAL INTEGRITY
IN MULTILEVEL SECURE DATABASESt

Vinli M. Doshi and Sushil Jajodia*

The MITRE Corporation
7525 Colshire Drive

McLean, VA 22102-3481

ABSTRACT

Entity integrity and referential integrity are two important integrity constraints in relational databases. This paper
first defines these integrity constraints in the context of single-level relations, followed by their extension to
multilevel relations. While the concept of entity integrity extends to multilevel relations in a straightforward way,
various referential integrity rules often create a conflict between secrecy and integrity requirements. Different
referential integrity rules have been investigated with secrecy and integrity in mind, since both are important to
multilevel secure databases.

1. INTRODUCTION

Secrecy and integrity are two of the most frequently heard concepts in the database world. Secrecy refers to the
protection or safety of the data against unauthorized disclosure, and integrity refers to the correctness or accuracy of
data. Preserving the accuracy of information is extremely important in any database. In the relational model,
preserving accuracy of information is preventive in nature and is achieved by use of integrity constraints. Entity
integrity and referential integrity are the two of the most important integrity constraints. They apply to all relations
and should be enforced by the database management system (DBMS).

Although some aspects of referential integrity have been examined in the context of secure multilevel databases by
many researchers [BURN88, GAJN88, LUNT90], there is still a need for a thorough and complete analysis of the
various referential integrity rules with respect to multilevel secure databases. The purpose of this paper is to try to
fulfill this need.1

The organization of the paper is as follows. Section 2 of this paper briefly reviews entity and referential integrity in
single-level relational databases. In section 3 we first extend these basic concepts of referential integrity to
multilevel relations. We then discuss the basic requirements to provide referential integrity control in multilevel
secure databases under different levels of security labeling.

2. ENTITY AND REFERENTIAL INTEGRITY IN SINGIE-IEVEL DATABASES

Entity integrity and referential integrity are two basic integrity requirements in a relational database. They prevent
incorrect data from being entered into the database. Entity integrity guarantees a unique representation of each
entity in the database through specification of primary key attributes for each relation. Referential integrity assures
that if there exist any references between two or more entities, then the related entities do exist in the database.
Referential integrity is an inter-relation integrity constraint and is achieved with the use of foreign key attributes.

t This work has been supported by the National Computer Security Center, contract number DAAB07-91-C-N751.

•f Also affiliated with the Center for Secure Information Systems and the Department of Information and Software
Systems Engineering, George Mason University, Fairfax, VA 22030-4444.

1 We refer the reader to [DOSH91] for a more detailed exposition.

134

Entity integrity is defined as follows: A tuple in a relation cannot have a null value for any of the primary key
attributes.

Before we can define referential integrity, it is necessary to define the concept of a foreign key. The definition of a
foreign key requires two relation schemas: a referencing relation and a referenced relation. Let Rl and R2 be two
relation schemas, and let Rl and R2 denote the relations corresponding to Rl and R2, respectively. Let PK denote
the primary key of R2, and let FK denote one or more attributes of the relational schema Rl. FK is said to be a
foreign key of Rl if given any tuple tl in Rl, the following two requirements are met:

1. 11 [FK] either does not contain any null values or contain only null values, and
2. whenever tl[FK] is non-null, there is a tuple t2 in R2 such that tl[FK] = t2[PK]. Here Rl is the

referencing relation and R2 is the referenced relation. Sometimes PK is referred to as the target value of
the foreign key FK.

It follows from the definition of the foreign key that there is an identical matching primary key value in the
referenced relation for every foreign key value in the referencing relation. It is important to maintain the integrity
between the referencing values (foreign key values) and the referenced values (primary key values). This integrity
constraint is called referential integrity. It ensures that the database does not contain any invalid or unmatched non-
null foreign key values (i.e., those values that do not have matching primary key values in the referenced relation).
Referential integrity for relations ensures that each non-null foreign key value matches some corresponding primary
key value.

2.1 REFERENTIAL INTEGRITY RULES

Whenever two or more relations are related through referential constraints, it is necessary that references be kept
consistent in the face of insertions, deletions, and updates to these relations. Date [DATE90] (see also [DOSH91])
identifies the following four rules to maintain consistency of references. Exactly which rule is chosen for a
particular relation depends on the behavior desired by the underlying application.

1. Nulls Rule
2. Delete Rule

a. RESTRICTED-delete
b. CASCADES-delete
c. NULLIFIES-delete

3. Update Rule
a. RESTRICTED-update
b. CASCADES-update
c. NULLIFIES-update

4. Insert Rule

The rules above are not exhaustive. There can be additional options like conversation with the end user, transferring
information to some other files, etc.

.1. MULTILEVEL RELATIONAL DATA MODEL

There are four different ways of assigning access classes to data stored in relations. One can assign access classes to
entire relations (relation-level granularity), to individual tuples (rows) of a relation (tuple-level granularity), to
individual attributes (columns) of a relation (attribute-level granularity), or to individual elements of a relation
(element-level granularity). In the definitions below, the most general case is considered, in which access classes
are assigned to individual data elements stored in relations. The modifications required for relations at other levels
of granularity are straightforward.

We view a multilevel relation schema as R(Ai,Cir A2, C2 An, Cn, TC) .where each A; is a data attribute over
some domain Dj, each C; is the classification attribute of Aj, and TC denotes the access class of the entire tuple. The
domain of C, is some set consisting of access classes, and the domain of TC is the sublattice containing the union of
the domains of C; i = 1,... , n.

135

For a multilevel logical relation schema /?, there is one physical relation Rc per access class in the security lattice. A
user having a clearance at an access class c sees the relation Rc which contains data at access class c or below. More
formally a relation at an access class c has the form RC(A],C/, A2, C 2 An, Cn, TC). Rc consists of a set of
tuples of the form (aj, c/, 02, C2 an, cn, tc) where each a; lies in the domain D; or a; is null, c >c,-, and tc is the
least upper bound of all c;, i = 1, ... ,n. The access classes of the primary key values are always identical. If a; is
null, its classification attribute ci is identical to the access class of the attributes constituting the primary key.

3.1 POLYINSTANTIATION IN MULTILEVEL RELATIONS

The notion of a primary key is a fundamental concept in the world of single-level relational databases.
Unfortunately it does not extend straight-forwardly to the multilevel world. This is because the *-property, which
does not allow any write downs, must be preserved, and signalling channels must be avoided. Problems arise in
multilevel relations when a user tries to enter another tuple with the same primary key value as that of an existing
tuple at another access class. This update cannot be allowed if a relation's entity integrity is to be preserved. On the
other hand, if the user is not allowed to insert the tuple, then either there exists a signalling channel (if the user is
low) or the database suffers from a denial of service (if the user is high).

These security considerations have led to the notion of poly instantiation [DENN87] (see also [JAJO90, JAJ091a,
JAJ091b, LUNT90]). Polyinstantiation forces a relation to contain multiple tuples with the same primary key
distinguishable by their classification levels or by the non-primary key attributes of the relation. The debate
continues as to whether polyinstantiation is needed in multilevel relations or not. If polyinstantiation is not required
in multilevel relations, then there has to be a solution to close signalling channels. If polyinstantiation is made a
requirement for multilevel relations, then the question is how polyinstantiation should be managed.

A thorough discussion of all the issues associated with polyinstantiation is beyond the scope of this paper. For the
purpose of this document, the discussion of polyinstantiation will be confined to the impact it has on referential
integrity. In the remainder of this document, it will be assumed that there is a user-specified primary key consisting
of a subset of the data attributes and not including the security classification [DENN87]. It will be called the
apparent primary key of the multilevel relation schema.

3.2 ENTITY INTEGRITY IN MULTILEVEL RELATIONS

We assume that there is a relation schema R with a user defined apparent primary key, consisting of one or more
data attributes of R. It will be denoted by PK. The entity integrity property of the standard relational model can be
extended to the multilevel environment by defining the following three requirements (see, for example, [DOSH91]
for a justification of these requirements).

A multilevel relation schema R is said to satisfy entity integrity if for all relation instances Rc of R and, tuple t e RCy

1. if A;e PK then t[A;] * null,
2. if A;, Aj e PK then t[Q] = t[Cj], i.e., PK is said to be uniformly classified, and
3. if A; g PK then t[Q] > t[C[PK]] (where C[PK] is the classification of the apparent primary key PK).

3.3 REFERENTIAL INTEGRITY IN MULTILEVEL RELATIONS

As discussed in the previous section, a referential integrity constraint states that a foreign key value in a referencing
relation should always have a matching primary key value in the referenced relation. If the reference is between two
values that are at different access classes, there is a possibility of security violation. There are certain instances of
referential integrity in multilevel relations which give rise to signalling channels, i.e., cause downward flow of
information. In this section we will discuss in detail the effect of enforcing referential integrity rules, and will list
the requirements for having integrity and secrecy simultaneously in a multilevel relation.

136

According to the entity integrity constraint, if there is a multi-attribute primary key for a multilevel relation, then the
primary key should be uniformly classified. The same argument is extended to the foreign keys to give the first
requirement for referential integrity.

Requirement 1. The foreign key of the referencing relation must be uniformly classified (i.e., all attribute
values that make up the foreign key must be assigned an identical access class).

To study the effect of the delete, insert, and update rules on referential integrity in multilevel relations, we need to
identify the different possible relationships between the access class of the foreign key and the access class of the
targeted primary key. The possible relationships are as follows:

1. C[FK]<C[PK]
2. C[FK] = C[PK]
3. C[FK] > C[PK]

where C[FK] denotes the access class of a foreign key value in the referencing relation and C|PK] denotes the access
class of the apparent primary key in the referenced relation. These three cases have an impact on the multilevel
interpretations of the single-level referential integrity rules given in the previous section. We do not need to
consider the relationship where C[FK] and C[PK] are incomparable since referential integrity cannot be enforced in
this case.

13J Enforcement of Integrity Rules When CIFK1 < CIPK1

First consider the case when the access class of the foreign key value (i.e., the referencing tuple) is lower than the
access class of the primary key value in the referenced tuple. None of the insert, delete, or update integrity rules
would work for this case as there exists a signalling channel. Depending on the presence or absence of the
referenced primary key value at the higher access class, a low user would be allowed or not allowed to insert a
referencing tuple. This gives rise to a potential illegal flow of information from a high subject to a low subject. This
channel can be better explained with the help of the following example.

Example 1 - Consider a relation schema SOD(Starship, Objective, Destination) which gives information on the
name of the starship (Starship), the purpose of the flight (Objective), and the destination of the flight (Destination).
Starship is the apparent primary key of the relation schema SOD, and the security classifications are assigned at the
granularity of individual data elements. The hierarchical order usually followed is Top Secret (TS), Secret (S),
Confidential (C), and Unclassified (U). A user with a Secret clearance will see the entire multilevel relation SODs,
while a user with an Unclassified clearance will see an Unclassified instance SODu, as shown in figure 1.

Also consider the multilevel relation schema PS (Person_Name, Starship) which contains names of crew members
(Person_Name) and the starship to which the person is assigned (Starship). Person_Name is the apparent primary
key of the relation schema PS, and Starship is the foreign key of PS which refers to the relation schema SOD.
Typical relation instances for PS at the Unclassified level (PSu) and Secret level (PS.s) are also shown in figure 1.

Just by looking at the two relations the Unclassified user can infer that there is a flight for the Starship "Apollo"
which is classified at a higher access class. This follows from the basic referential integrity rule, as there is a
Starship "Apollo" present in the referencing relation instance PSu but not in the referenced relation instance SODy-
This is an inference problem.

In addition, a signalling channel problem will arise if an Unclassified user attempts to insert the tuple with Starship =
"Apollo" in the relation PS. The Unclassified user is allowed to insert the tuple only if there is already a tuple with
Starship = "Apollo" in the relation SOD at the Secret or higher level. If there is no such tuple in relation SOD then
the unclassified user's attempt is rejected, and this creates a potential signalling channel.

It has been observed that if the access class of the foreign key is lower than the access class of the referenced
primary key, then there exists a channel on insertion and also there is an inference problem. This is a violation of
security policy. The same problem exists for the other levels of granularity. This gives us the second requirement.

137

Requirement 2. The access class of the foreign key should always dominate the access class of the primary
key of the referenced tuple, i.e., C[FK] > C[PK].

Unclassified Instance SODjj
Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Voyager U Null U Null U U

Secret Instance SODs
Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Voyager U Spying S Mars S S

Apollo S Spying S Moon S S

Unclassified Instance PSu
Person_Name Starship TC

James Kirk U Enterprise U U

John Spock U Null U U

Tim Morris U Apollo U U

Secret Instance PSs
Person_Name Starship TC

James Kirk U Enterprise U U

John Spock U Voyager S s

Tim Morris U Apollo U u

Figure 1. Multilevel Relations SOD and PS

3.3.2 Enforcement of Integrity Rules When C1FK1 = C1PK1

When the access class of the referencing tuple and the access class of the referenced tuple are the same, all the
integrity rules are usable without modification because this case can be considered to be equivalent to relationships
occurring in a single-level database. All the insert, delete, and update rules have been formulated for single-level
relationships and do not cause violations of either the security rules or the integrity rules for multilevel data bases.
This fact has been acknowledged in the Sea View model [LUNT90] and the referential secrecy model given by
[BURN88], although Burns also suggests selective enforcement of referential integrity in those cases where the
access class of both the referencing relation and the referenced relation are not the same if the signalling channel
either can be monitored or is deemed not to cause a serious threat.

So it can be concluded that if the access class of the foreign key value is same as the access class of the referenced
primary key value then all integrity rules for update, delete, or insert can be used without violation of security
constraints for any level of security labeling.

3.3.3 Enforcement of Integrity Rules When C1FK1 > C1PK1

The last case, where the access class of the referencing tuple dominates the access class of the referenced tuple,
needs to be considered now. Each of the integrity rules for insert, delete, and update will be considered individually,
and the effect of strict dominance of the referencing tuple's access class over that of the referenced tuple will be
investigated for non-polyinstantiated multilevel relations and polyinstantiated multilevel relations. It is necessary to
include the case of polyinstantiated relations here because it has been observed that polyinstantiation causes
semantic ambiguity in a DBMS providing referential integrity control, when C[FK] > C[PK].

For both polyinstantiated and non-polyinstantiated relations, the validity of the referential integrity rules will be
studied for multilevel relations with element-level granularity only. The behavior of the integrity rules at other

138

levels of security labeling are discussed in detail in [DOSH91]. For a quick and short reference we give the results
of the study for all levels of granularity in the conclusion of this paper.

3.3.3.1 Polyinstantiated Multilevel Relations

First we discuss the referential integrity rules when enforced in polyinstantiated multilevel relations with element-
level granularity. For this discussion, example instances of the relations SOD and PS incorporating a
polyinstantiated tuple have been adopted. The relations SOD and PS with element level granularity, look as shown
in figure 2. Tuple numbers have been added for easy references in the following example.

To understand the problems in providing referential integrity control in polyinstantiated multilevel relations with
element-level granularity, each of the integrity rules will be considered individually using the relations SOD and PS
given in figure 2. It should be noted that the primary key for both the relations is the attribute alone without its
classification level. It is observed in the discussion that for all the integrity rules, i.e., the insert rule, the delete rules,
and the update rules, integrity is best maintained when the access class is included in the primary key which is
equivalent to having the access class of the foreign key equal to the access class of the targeted primary key.

SOD PS
No. Starship Objective Destination TC

1 Enterprise U Exploration U Talos U U

2 Enterprise S Spying S Mars S S

No. Person_Name Starship TC

3 James Kirk U Enterprise U U

4 John Spock S Enterprise S s

Figure 2. Relations SOD and PS with Polyinstantiation

1. Insert Rule - The insertion of tuples in multilevel relations with element-level labeling while maintaining
referential integrity, depends on the order of insertion. There may arise situations where there are signalling
channels. For instance, suppose that first tuples 1 and 2 are inserted in the relation SOD and then tuples 3 and 4 are
inserted in relation PS. Tuple 3 in relation PS should not be inserted as there exists a referenced tuple 2, with a
primary key value having an access class higher than the access class of the foreign key value in tuple 3. But as
there also exists a matching tuple 1 in relation SOD, tuple 3's insertion should not be rejected. Therefore there is a
conflict. This can be resolved by having the access class of the primary key value included in the apparent primary
key. In that case the access class will also be included in the foreign key, and the insertion of a referencing tuple
will be accepted only if the access classes also match.

2. Delete Rules - Assuming that the insertion of the rows succeeds, it is observed that there is referential ambiguity
when an attempt is made to delete the primary key value [GAJN88]. Suppose that all four rows in relations SOD and
PS have been successfully inserted as shown in figure 2. An Unclassified user makes an attempt to delete the tuple 1
from the relation SOD. For either CASCADE or NULLIFIES-delete, though, the deletion is permitted it is not clear
which referencing tuple to delete or set null in the relation PS. Tuples 3 and 4 in the relation PS both reference
Starship = "Enterprise.' If the primary key of relation SOD included its access class, then it would have been obvious
that it is tuple 3 which has to be deleted or have its foreign key set to null, when the Unclassified user deletes
tuple 1.

3. Update Rules - The update rules work in a similar fashion to the delete rules. As in the case of delete rules,
there is a referential ambiguity when the primary key only includes the apparent PK. The confusion can be
eliminated by including the access class in the apparent primary key.

From the discussion above, it can be concluded that in polyinstantiated relations with element-level granularity, the
access class of the apparent primary key must be included in the primary key. Having the access class included in

139

the primary key is the same as having the access class of the foreign key equal to the access class of the primary key,
i.e., C[FK] = C[PK].

Requirement 3. For polyinstantiated multilevel relations with element-level granularity, the access class of the
foreign key must be same as the access class of the referenced primary key.

3.3.3.2 Non-Polvinstantiated Multilevel Relations

In this section, the discussion is on whether or not referential integrity can be provided in non-polyinstantiated
relations, when the access class of the foreign key is higher than the access class of the apparent primary key.
Without polyinstantiation, referential ambiguities cannot exist; however, conflicts may arise that prevent certain
referential integrity rules from operating successfully when the access classes of the foreign key and targeted
primary key differ.

Each of the integrity rules for insert, delete, and update defined in section 2.2 is examined individually and
conditions violating the security constraints are investigated.

la RESTRICTED-delete Rule - The RESTRICTED-delete rule states that the referenced primary key tuple cannot
be deleted as long as there is a corresponding referencing tuple somewhere in the database. For instance, consider
the relations SOD and PS given in figure 3.

SOD PS
Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Voyager U Spying S Mars S S

Apollo S Spying S Moon S S

Person_Name Starship TC

James Kirk U Enterprise U U

John Spock S Voyager S S

Figure 3. Relations SOD and PS without Polyinstantiation

In relation PS, the access class of the foreign key value Starship = "Voyager" dominates the access class of the
primary key value in the relation SOD. According to the RESTRICTED delete rule, as long as there is a tuple
having foreign key value "Voyager" in PS, the tuple with primary key value "Voyager" cannot be deleted from the
relation SOD. This gives rise to a signalling channel, as there is a downward flow of information from the high level
referencing foreign key to the low level subject attempting to delete the tuple containing the primary key. Therefore,
the RESTRICTED-delete Rule violates secrecy when the access class of the foreign key dominates the access class
of the primary key of the referenced tuple.

lb. CASCADES-delete Rule - As discussed earlier, the CASCADES-delete rule states that when a primary key
value is deleted, all corresponding referencing tuples should also be deleted. For instance, if the tuple in SOD with
Starship = "Voyager" is deleted at the Unclassified level, then the tuple in PS with Starship = "Voyager" at the
Secret level will also be deleted. This action causes a signalling channel. In the relation instance of PS given in
figure 3, Person_Name = "William Spock" is at Unclassified level in the tuple containing Starship ="Voyager" at
Secret level. When the tuple is deleted as a result of the CASCADES-delete action, an Unclassified user will come
to know that there existed a starship "Voyager" at some higher level. Hence, the CASCADES-delete rule fails for
the case where C[FK] > C[PK]. For all other levels of granularity, CASCADES-delete rule remains valid
[DOSH91].

lc. NULLlFIES-delele Rule - The NULLIFIES-delete rule states that when a primary key value in the referenced
relation is deleted, then the corresponding foreign key values in the referencing relation should be set to null. As an
example the value of Starship = "Voyager" in relation PS is set to null when the tuple in SOD for Starship =

140

"Voyager" is deleted. This does not conflict with the security constraints, as long as write-ups are allowed, since
there would not be a downward flow of information.

From the discussion above, unlike polyinstantiated relations with element-level labeling there is no referential
ambiguity while deletion and the following requirement can be inferred for the case when the access class of the
foreign key value dominates the access class of the primary key value:

Requirement 4. In relations with element-level granularity, when the access class of the foreign key value is
higher than the access class of the primary key value, only NULLIFIES_delete rule and SET DEFAULT-delete
rule can be used as delete options to specify referential constraints.

2a. RESTRICTED-update Rule - Consider the relations SOD and PS given in figure 3. In relation PS, the access
class of the foreign key value Starship = "Voyager" dominates that of the primary key value in the relation SOD.
According to the RESTRICTED-update rule as long as there is the tuple having foreign key value "Voyager" in PS.
the primary key value "Voyager" cannot be updated in the relation SOD. This gives rise to a signalling channel as
there is flow of information from the high level referencing foreign key to the low level subject attempting to delete
the tuple containing the the primary key. Therefore, the RESTRICTED-update Rule will not work if the access class
of the referencing tuple dominates the access class of the referenced tuple.

2b. CASCADES-update Rule - The CASCADES-update Rule states that if the primary key value Starship =
"Voyager" in SOD is updated, then the foreign key value Starship = "Voyager" in PS will also be updated. This
action will not cause a signalling channel and will also maintain integrity, irrespective of the fact that the access
class of the foreign key value dominates the access class of the primary key value.

2c. NULLIFIES-update Rule - The NULLIFIES-update Rule specifies that the value of Starship = "Voyager" in
relation PS be set to null if Starship = "Voyager" in SOD is updated. This does not conflict with the security
constraints, as long as write-ups are allowed, since there would not be a downward flow of information.

From the discussion for each of the update rules the requirement for the specification of the update rules is the
following:

Requirement 5. When the access class of the foreign key value is higher than the access class of the referenced
primary key value in relations with element-level granularity, then only CASCADES-update, NULLIFIES-
update, or SET DEFAULT-update should be used. The RESTRICTED-update rule violates the secrecy
constraints.

3. INSERT Rule - The insert rule for integrity states that the insertion of a foreign key value should comply with
the nulls rule and the basic referential integrity rules; that is, each foreign key value in the referencing relation
should have an identical primary key value in the referenced relation. In multilevel databases, it is important to
ensure that there is no downward flow of information when the insertion is made. If the access class of the
referencing tuple (foreign key value) dominates the access class of the referenced tuple (primary key value) then
there is no such possibility of a signalling channel. If a higher user attempts to insert a foreign key value, the user's
insertion is accepted or rejected based on the presence or absence of the referenced value at the lower access class.
There will be only an upward flow of information, which means that both integrity and security rules are satisfied. It
should be noted that, unlike with polyinstantiated relations, there is no confusion while inserting the rows in the two
relations.

Requirement 6. For the insert rule to be valid without violation of security or integrity constraints, the access
class of the foreign key value should dominate the access class of the referenced primary key value in relations
with element-level granularity.

4. CONCLUSIONS

Entity integrity and referential integrity are two important integrity constraints that should be enforced by the
DBMS. Referential integrity is the most important inter-relation integrity constraint in the relational data model. In

141

this paper, the integrity constraints have been discussed for single-level relations, then the concepts have been
extended to the multilevel world.

The extension of the concepts of referential integrity from single-level relations to multilevel relations is not
straightforward. This is because restrictions are needed to provide referential integrity control in MLS DBMSs
without compromising secrecy. The basic requirement for referential integrity is that each referencing foreign key
value must have an identical target primary key value in the referenced relation. An additional requirement for
multilevel relations is that the foreign key and the primary key should be uniformly classified, i.e., all attributes
included in the key should have the same access class.

From the discussion in the paper, it can be concluded that enforcing referential integrity when the access class of the
foreign key is equal to the access class of the referenced primary key is simple and without any ambiguity. All
integrity rules apply in this case, whether the relations allow polyinstantiation or not. In fact, when polyinstantiation
is allowed, the access class of the primary and foreign key values must be included as part of the key to
disambiguate references and allow the referential integrity rules to be enforced.

Referential integrity completely fails when the access class of the foreign key does not dominate the access class of
the primary key. When the access class of the foreign key strictly dominates the access class of the referenced
primary key, some of the integrity rules for actions to be taken on deletion or modification of a key value apply, with
some differences based on labeling granularity. A summary of the validity of different referential integrity rules for
different levels of granularity is given in table 1.

Table 1. Summary of Validity of Integrity Rules for C[FK] > C[PK]

Level of Granularity Element Tuple Attribute Relation

Polyinstantiated Poly. Not
Poly.

Poly. Not
Poly.

Not
Poly.

Not
Poly.

Insert Rule Invalid OK Invalid OK OK OK

Delete Rules:

Rcstricted-delete Invalid Invalid Invalid Invalid Invalid Invalid

Cascades-delete Invalid Invalid Invalid OK OK OK

Nullifies-delete Invalid OK Invalid OK OK OK

Set-default-delete Invalid OK Invalid OK OK OK

Update Rules:

Restricted-update Invalid Invalid Invalid Invalid Invalid Invalid

Cascades-update Invalid OK Invalid OK OK OK

Nullifies-update Invalid OK Invalid OK OK OK

Set-default-update Invalid OK Invalid OK OK OK

REFERENCES

[BURNS88] Rae K. Burns, "Referential Secrecy," Proceedings of the IEEE Symposium on Security and
Privacy, IEEE Computer Society Press, 1990.

142

[DATE90] C.J. Date, "Referential Integrity and Foreign Keys: Further Considerations," in Relational
Database Writings 1985-1989, Addison-Wesley, 1990, pp. 99-184.

[DENN87] Dorothy E. Denning and Teresa F. Lunt, Roger R. Schell, Mark Heckman, and William R.
Shockley, "A Multilevel Relational Data Model," Proceedings of the 1987 IEEE Symposium on Security and
Privacy , IEEE Computer Society Press, 1987, pp. 220-234.

[DOSH91] Vinti M. Doshi and Sushil Jajodia, "Referential integrity in multilevel secure database
management system," The MITRE Corporation, 1991.

[GAJN88] George E. Gajnak, "Some Results from the Entity/Relationship Multilevel Secure DBMS Project,"
Proceedings of the Fourth Aerospace Computer Applications Conference, IEEE Computer Security Press, 1988, pp.
66-71.

[J AJO90] Sushil Jajodia and Ravi Sandhu, "Polyinstantiation Integrity in Multilevel Relations." Proceedings
of IEEE Symposium on Security and Privacy, Oakland, California, May 1990, pp. 104-115.

[JAJ091a] Sushil Jajodia and Ravi Sandhu, "Toward a Multilevel Secure Relational Data Model,"
Proceedings of ACM SIGMOD International Conf. on Management of Data, Denver, Colorado, May 29-31, 1991,
pp. 50-59.

[JAJ091b] Sushil Jajodia and Ravi Sandhu, "Enforcing Primary Key Requirements in Multilevel Relations,"
Proceedings of the Fourth RADC Workshop on Multilevel Database Security, Little Compton, Rhode Island, April
1991.

[LUNT90] Teresa F. Lunt, Dorothy E. Denning, Roger R. Shell, Mark Heckman, and William R. Shockley,
"The SeaView Security Model," IEEE Transactions on Software Engineering, Vol. 16, No. 6, June 1990, pp.593-
607.

143

EVOLVING CRITERIA FOR EVALUATION:
THE CHALLENGE FOR THE INTERNATIONAL

INTEGRATOR OF THE 90s.

Virgil Gibson Joan Fowler
839 Elkridge Landing Road 2411 Dulles Corner Park

Suite 106, Box 24 Suite 500
Linthicum,MD 21090 Herndon, VA 22071

Abstract

This paper presents a comparison of three international security criteria and contrasts their approaches.
It demonstrates the integrator's perspective of the implications for designing solutions to meet worldwide information
protection needs. The implied and stated use of each of the criteria is included in this paper with a description of
the barriers to understanding between the criteria. A high level comparison of the approaches taken in the three
criteria is presented. From the system integrator's perspective, the causes for the ambiguity between these criteria
are discussed, with suggestions for the international community.

Introduction

The United States Department of Defense (DoD) published in 1985 the DoD Trusted Computer System
Evaluation Criteria (TCSEC) [3] which is the seminal work in detailing the criteria which guide buyers and sellers
in the computer security arena. The TCSEC, and its interpretations; the Trusted Network Interpretations (TNI) [7],
the Trusted Database Interpretation (TD1) [8], and the Computer Security Subsystem Interpretation (CSSI) [9], form
the nucleus around which the U.S. Trusted Product Evaluation Program has developed.

Recently, two new criteria have appeared on the world scene which are to be used in the evaluation of
security applications of computer technology. In December 1990, the Canadian System Security Centre (CSSC)
released the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), Version 2.0. The CTCPEC was
revised in April, 1992, as Version 3.0. [2] In June 1991, the Harmonized Criteria of France, Germany, The
Netherlands and the United Kingdom (UK) was published as the Information Technology Security Evaluation
Criteria (ITSEC), Version 1.2 [5].

This paper is divided into two overall segments. The first segment is a description of the three criteria:
their intended audiences, life cycle use, and approaches. The second segment describes how the international
systems integrator is involved in the situation. This second segment also provides the system integrator's
perspective of the first segment: the ambiguities caused by the three international criteria, and suggestions for the
future.

Stated or Implied Use of Each Criteria

Before discussing the intended use of each of the criteria, the definition of a couple of terms is in order.
For the purposes of this paper, a product "is a hardware and/or software package that can be bought off the shelf
and incorporated into a variety of systems." A system "is a specific [data processing] installation with particular
purpose and known operational environment" [5].

Intended Audience for the Criteria

All three of the criteria have a common understanding of these two terms, product and system. However,
the three criteria are not intended to be used in the same context with regard to the two terms.

144

The target for evaluations using the U.S. TCSEC has historically been primarily products. Its focus is on
industry, in that it is an incentive to vendors to develop trusted products. An entire series of guidelines have been
developed to aid industry in the use of the criteria. The TCSEC is intended to provide guidance to the commercial
world on the development of trusted products, and provide a direction for the growth of each individual product.
Industry may choose to grow their product toward more security features or more assurance in these features.

The Canadian CTCPEC specifically states that the target for its evaluation is products. However, the focus
of the CTCPEC is on government. The criteria does not provide clear direction for the growth of commercial
products. It provides only the criteria by which a product may be evaluated once it is developed. However, the
CTCPEC very conveniently allows a vendor to develop a product, and then add to the assurances of the product
by improving the documentation in a growth fashion.

The European ITSEC specifically maintains that its target for evaluation is both products and systems. The
ITSEC states that "it is important for the sake of consistency that the same security criteria are used for both
products and systems; it will then be both easier and cheaper to evaluate systems containing products which have
already been successfully evaluated." [5] Because of the loose nature of the ITSEC approach, it also does not
present a clear growth direction for the security features of products. However, like the CTCPEC, vendors may
build a product/system and then add to the assurances of the product/system by improving the documentation and
receiving a higher rating for assurance.

Barriers to Understanding

There are further barriers to understanding of the three criteria. The use of terminology in the three
criteria is one of these barriers. Certain actions in the overall evaluation process are not universally identified in
the three schemes. To illustrate this point, a simile of the process by which a household appliance receives the
Underwriters Laboratories (UL) Seal of Approval will be used. The appliance is developed by a vendor and
submitted to UL for testing. UL initially may test the appliance in a laboratory. This is the same as the evaluators
scrutinizing a product "from a perspective that excludes consideration of a specific application environment." [2]
In the U.S. and Canada, this process is referred to as the Evaluation performed by the National Computer Security
Center (NCSC) and the CSSC respectively. However, since the ITSEC is aimed at both products and systems, there
is not a clear distinction between this first type of evaluation and those performed for specific application
environments.

Returning to the simile, once the UL has tested an appliance in the laboratory, it may be tested for
application to some specific representative types of households. This is similar to the "assessment to determine
whether appropriate security measures have been taken to permit the system to be used operationally in a specific
environment." [3] This second type of evaluation is called the Certification evaluation under the TCSEC. In the
CTCPEC, the exact same type of evaluation is termed a Risk Assessment. Again, since the ITSEC does not
differentiate between its use for systems and products, it only recognizes the single type of evaluation.

The final step in the process of the appliance testing is the award of the UL Seal of Approval. This is
awarded after the evaluation; and an official authorization is given that the appliance meets the standards for the
Seal of Approval. In the TCSEC, the "official authorization that is granted to an [Automatic Data Processing] ADP
system to process sensitive information in its operational environment" [3] is the formal approval/accreditation
procedure, usually referred to as an accreditation. The CTCPEC refers to the same procedure as the formal
approval. The ITSEC indicates that national certification bodies "will award certificates to confirm the rating of
the security." [5] In the ITSEC, the process to award these certificates is referred to as the certification process.

This simile of household appliance UL testing demonstrates that terminology is a confusion factor for the
systems integrator using all or a combination of the three criteria. Since evaluation, risk assessment, certification,
final approval, and accreditation can mean different processes within the approval of systems and products, the
integrator must be aware of the criteria and audience when using each of these terms.

145

Life Cvde Use of the Criteria

At the current time, the practical use of the TCSEC is much more specified than that of the other two
criteria. Since the TCSEC has been available longer, this situation is not surprising. The NCSC has developed
guidelines for vendors on the use of the TCSEC for product evaluation and evaluation maintenance: the Trusted
Product Evaluations, A Guide for Vendors [10]; and the Rating Maintenance Phase, Program Document [11]. The
first describes the procedure which the vendor should use to take a product through evaluation, and the second
defines the procedure to reevaluate subsequent releases of evaluated products.

Neither the CTCPEC nor the TCSEC discuss the practical use of the criteria. The ITSEC acknowledges
that there needs to be national certification bodies to perform evaluations and a national procedure for the
maintenance of certified ratings following changes to an evaluated target. However, the details of both of these
procedures are indicated as being beyond the scope of the ITSEC. This spring the Information Technology Security
Evaluation Manual (ITSEM) was released for comments in draft version 0.2. [6] This document is meant to
"harmonize existing security evaluation methods in each of the four countries in order to ensure that national
evaluation methods conform to a single philosophy". This recent development is a major step toward standardization
of the use of the ITSEC. The latest version of the CTCPEC indicates that it was written in such a way to preclude
the need for interpretations. However, only practice will determine the procedures for the use of that criteria.

Approach Comparison

The schemes defined in each of the criteria are different in some ways, and the same in others. However,
the underlying principle is common to the three criteria. This underlying principle is that there are security features
(e.g., access control, auditing) which are required to be available in products/systems. Additionally, there are
assurances (e.g., documentation, testing) which must be used to prove that the features are performing completely,
correctly, and consistently. All three of the criteria agree on these concepts. However, the packaging of these
concepts and some of the details of implementation of these principles are drastically different. The similarities and
differences are addressed here to highlight the differences which will cause a barrier to international acceptance of
products/systems and illustrate the knowledge which an international integrator needs to compete.

The U.S. TCSEC Approach

The TCSEC has specified the set of functional features and a set of the type of associated assurances which
a product must possess for each class level. These features and assurances are bundled together into a single class.
There are four possible divisions containing seven classes in the TCSEC scheme. These divisions are Minimal
Protection (D), Discretionary Protection (Cl and C2), Mandatory Protection (61, B2, and B3), and Verified
Protection (Al). A target (product) must meet all of the requirements of a class to be assigned the class level. If
one of the functions or assurances of a particular class is not available for the target, the next lower class level with
which the target complies is assigned to the target.

The Canadian CTCPEC Approach

The CTCPEC scheme is separated into criteria of security functionality features and assurances. Unlike
the TCSEC, the functional features are not grouped together with the assurance requirements. There are five
criteria: Confidentiality, Integrity, Availability, Accountability, and Assurance. Each criteria is further divided into
divisions and levels. The Confidentiality criteria is decomposed into: covert channels (CC-0, CC-1, CC-2, and CC-
3); discretionary confidentiality(CD-0, CD-I, CD-2, CD-3, and CD-4); mandatory confidentiality (CM-0, CM-],
CM-2, CM-3, and CM-4); and object reuse (CR-0 and CR-1). The Integrity criteria is divided into: discretionary
integrity (ID-0, ID-1, ID-2, ID-3, and E>-4); mandatory integrity (IM-0, IM-1, IM-2, IM-3, and IM-4); physical
integrity (IP-0, IP-1, IP-2, IP-3, and IP-4); rollback (IR-0, IR-1, and IR-2); separation of duties (IS-0, IS-1, IS-2,
and IS-3) and self testing (TT-0, IT-1, IT-2, and IT-3). The Availability criteria is divided into: containment (AC-
0, AC-1, AC-2, and AC-3); robustness (AR-0, AR-1, AR-2, and AR-3); and recovery (AY-0, AY-1, AY-2, and
AY-3). The Accountability criteria is partitioned into: identification and authentication (WI-0, WI-1, and WI-2);
audit (WA-0, WA-1, WA-2, WA-3, and WA-4); and trusted path (WT-0, WT-1, and WT-2). Finally, the

146

Assurance criteria consists of trust (T-0, T-l, T-2, T-3, T-4, T-5, T-6, and T-7). Tables 1 through 4 illustrates
the CTCPEC profiles which correspond to the TCSEC Classes C2 through B3 respectively. There is no correlation
to these profiles and the associated levels of trust within the corresponding TCSEC Classes. An equivalent TCSEC
profile does not imply that a TCSEC rating meets the profile. Hence, these are to be considered as one way
mappings.

Table 1. CTCPEC Profile Equivalent to TCSEC
As in the TCSEC, a target (product) must Class C2

meet all of the requirements for a specific level,
otherwise it is assigned the lowest class with which the
target complies completely. Each criteria division
contains a level designated "0". This level is reserved
to targets which have been evaluated but failed to meet
the requirements of any of the higher levels for the
category division.

The European ITSEC Approach

The ITSEC also has separated the
functionality into a separate rating from the assurances
or, as stated in the ITSEC, the effectiveness and
correctness aspects of assurance. There are ten
example functionality classes. The first five are
closely tied to the TCSEC classes (F-Cl, F-C2, F-Bl,
F-B2, and F-B3). Table 5 maps the ITSEC classes to
the TCSEC classes. This mapping is a general guide, the two criteria schemes do not directly correspond to each
other.

Functionality Division/Mechanism Level

Confidentiality Discretionary 2

Object Reuse

Integrity Discretionary

Separation of Duties

Self Testing

Accountability I&A

Audit Level

The other five classes are new in the ITSEC: high integrity requirements (F-IN); high requirements for
availability of complete or special functions of the target (F-AV); high requirements for data communication

integrity (F-DI); high demands for data communication
Table 2. CTCPEC Profile Equivalent to

TCSEC Class Bl

Functionality Division/Mechanism Level

Confidentiality Discretionary 2

Mandatory 2

Object Reuse

Integrity Discretionary or
Mandatory

Separation of Duties

Self Testing

Accountability I&A

Audit Level

confidentiality (F-DC); and networks with high
demands on confidentiality and integrity of information
(F-DX). These classes are examples and not
obligatory. They can only be used if the target
(product or system) contains all aspects of the class.
A target may reference one or more of these example
functionality classes to define part or all of its
functions. As an alternative to the use of the example
pre-defined functionality classes, the sponsor of
evaluation can specify the security enforcing functions
of the target.

There are seven possible correctness levels
(E0, El, E2, E3, E4, E5, and E6) described in the
ITSEC. In addition, following the evaluation of the
correctness, an assessment of effectiveness based on a
vulnerability analysis of the target is performed. There
is a pass/fail designation of the evaluation on
effectiveness grounds.

The ITSEC approach is more flexible, and more open to interpretation by all of the national certification
bodies which will perform the evaluations. This flexibility may limit the ability for any future reciprocal recognition
of certifications. The actual practice in the use of the criteria in the future will determine the feasibility of this

147

Table 3. CTCPEC Profile Equivalent to
TCSEC Class B2

Functionality Division/Mechanism Level

Confidentiality Covert Channels 1

Discretionary 2

Mandatory 3

Object Reuse 1

Integrity Discretionary or
Mandatory

1

Separation of Duties 2

Self Testing 1

Accountability I&A 1

Audit Level 1

Trusted Path 1

approach. For the systems integrator, this approach
has the potential to evolve into four different practical
usages, one for each of the involved countries: United
Kingdom, The Netherlands, France and Germany.

Use of the Three Criteria

For an example of the rating of a product
under each of the schemes, we selected a fictional
product that is an M-Component (Mandatory Access
Control) under the TNI with a rating of TCSEC Class
Bl M-Component. The TNI "allows for the evaluation
of components which in and of themselves do not
support all the policies required by the TCSEC" but
which can be reused "in different networks without the
need for a re-evaluation of the component." [7]

This same product when rated under the
CTCPEC would have a rating of CM-1, CR-1, WI-3,
and T-3. This designation is a clear correspondence
between the two criteria, TCSEC (TNI) and the
CTCPEC. The correspondence is not as clear to the
ITSEC scheme. The closest ITSEC example rating is
F-Bl and E3. However, a F-Bl has requirements
which do not correlate to the M-Component
designation of the TNI (e.g., Identification and
Authentication, "A.20 The TOE shall uniquely identify
and authenticate users" [5]). Further, there are requirements for F-Bl which are not designated in the U.S. scheme
for a Bl M-Component, reference [1] page 48.

Approach Conclusion

This discussion of the differing terminologies, requirements, and approaches of the three criteria must lead
to the conclusion that there is no consistency between them. This inconsistency leads to confusion in the systems
integration community among others. The potential effects that this confusion will have on this community are
discussed below.

Systems Integrator Perspective

Systems vendors and integrators, who expect to survive through the decade of the 90s, will have to contend
with the trusted systems criteria discussed above. Their differing requirements and approaches, and the implications
of their use will determine international competitiveness.

What is a Systems Integrator?

In this paper, the term System Integrator is defined as follows: A systems integrator provides the expertise
to cost effectively bring together divergent products from multiple product lines to solve a specific operational
problem in a specific installation. In the case where the problem includes protection of information, some of the
products will have security functionality, and will likely have been evaluated by one of these international schemes.

Systems integrators, as defined for this paper, typically respond to Requests for Proposals (RFPs) and
Invitation for Bids (IFBs) from Governments and related Organizations, such as the Norm Atlantic Treaty
Organization (NATO), solving a specific problem (part of which is assumed to include security) in a given

148

Table 4. CTCPEC Profile Equivalent to
TCSEC Class B3

Functionality Division/Mechanism Level

Confidentiality Covert Channels 1

Discretionary 3

Mandatory 3

Object Reuse 1

Integrity Discretionary or
Mandatory

1

Separation of Duties 2

Self Testing 1

Availability Recovery 1

Accountability I&A 1

Audit Level 2

Trusted Path 2

environment. Procurement documents must be
developed such that vendors with solutions based on
approved products from any evaluation scheme could
compete. Such procurement documents would contain
phrases such as: the proposed solution shall comply
with all requirements for ITS EC F-Bl, E3. Systems
integrator teams would then design a solution which
was composed of subsystems and products which met
the requirement in the most cost effective combination.

Of course, the solution to any large
requirement usually requires combining (evaluated)
security products into more complex systems. The
analysis of the total problem, with security
considerations, requires that the security team be
conversant with the entire architecture, each of the
evaluation schemes, and the products/technology
evaluated under each scheme.

When the requirement is stated in terms like:
the offerors' solution must be capable of evaluation at
the TCSEC C2 level, the integrator's problem is
compounded. Products which have been evaluated
according to one scheme may not be acceptable, or
meet the analogous level in the others. The team must
consider the most cost-effective path to satisfying the

requirement and that path may require including an evaluation (or re-evaluation) of a product or assurance
documents in the overall cost.

What Do Multiple Evaluations Mean to Systems Integrators?

Vendors having products which have been evaluated on more than one scheme will, of course, be reluctant
to draw distinctions among criteria. They are in business to sell products, not necessarily to solve a given specific
operational problem.

Micronyx, an international vendor of a
product, TriSpan, have listings in the UK Certified
Security Products List (UKSP), and the U.S. Evaluated
Products List (EPL). The product was advertised in
Info mat ics [4] as UK Government Certified and U.S.
NCSC Certified. Indeed, the 1 October 1991 UKSP
lists TriSpan version 1.2130 as meeting UKL2
(Independently Tested). The U.S. NCSC
EPL-SUM-89/007, however, gave the product an
overall rating of TCSEC Class D, for Identification and
Authentication (I&A), Discretionary Access Control
(DAC), and Audit, stating that it does not meet the
assurance and documentation requirements for a higher
rating.

A trusted systems integrator contemplating
using such a product to meet an overall requirement of
any of the equivalent evaluation ratings, as described

Table 5. ITSEC to TCSEC
Mappings

TCSEC Class ITSEC Class

D E0

Cl F-Cl, El

C2 F-C2, E2

Bl F-Bl, E3

B2 F-B2, E4

B3 F-B3, E5

Al F-B3, E6

149

earlier, must be able to accurately estimate the costs to develop assurance and documentation which may be required
by the accrediting or approving official.

Causes for Ambiguity

An international systems integrator is faced with ambiguity caused by several factors. Each of the
principals involved with these criteria has autonomy to construct evaluation schemes, and maintain separate lists of
evaluated products. Currently Canada, the UK and the U.S. have such schemes in place and soon there likely will
be six lists.

Technology Export Restrictions

Six lists, mostly kept by the Intelligence community, implies loads of red tape to export technology, even
if the techniques are already in documented use in the intended market. A striking example of this now is the Data
Encryption Standard (DES) controversy. All the major U.S. vendors of systems like International Business Machine
Corporation (IBM), Digital Equipment Corporation (DEC), Hewlett Packard (HP), etc, incorporate DES in the
security functions of their offerings. The DES modules must be removed, or very costly negotiations must be
engaged to allow selling their products outside the U.S., even though DES is well documented, and other sources
for it exist outside the U.S. Similar restrictions are being applied to any products rated B3 or higher under the
TCSEC.

Language Translation

Additionally, the six lists are, of course, maintained in the native language of the keepers. The nuances
described earlier in this paper are exacerbated with translation. Each scheme is likely to have an array of
"interpretations and guidelines" such as now exist in the U.S. scheme. Both the CTCPEC and ITSEC contain
requirements which are not found in the TCSEC, and will therefore, require additional explanation of how these
requirements could be met by U.S. EPL products.

Standards and Security Requirements

The inherent ambiguity which must be resolved by system integrators is aggravated by divergent standards.
Security products are built to comply with criteria, not International Standards Organization (ISO) standards. When
both standards and evaluation ratings are stated as requirements in procurements, the system integrator must usually
make a compromise. A detailed technical knowledge of both will be required to develop a cost effective solution
which complies with the intent of standards and security requirements.

Generational Problems

The multiple evaluation syndrome is compounded by what may be termed the "generational" problem. As
criteria and schemes evolve, and products are evaluated, systems integrators must know when the evaluation was
completed in order to assess its usefulness. The UK evaluation scheme predates the ITSEC. The CTCPEC states
that revisions may be annual. (In fact, a major revision to the CTCPEC was released between the time that this
paper was conceptualized and written, requiring major changes to this paper which superficially describes the
approach. A wonderful example of the pitfalls and frustrations caused by generations of criteria.) Additionally,
the U.S. is developing a new federated criteria. It is clear that procurement professionals won't stay abreast of these
changes. Several recent U.S. procurements required solutions to comply with the 1983 version of TCSEC, and it
is very difficult to ascertain which products were evaluated using that criteria. Product vendors will naturally strive
to get commitments from evaluators to freeze requirements before evaluations are begun, to avoid moving targets.
Subsequent users of those products will necessarily need to know this information when developing specifications
for systems.

150

Suggestions for Community

This paper has surfaced a number of issues which result in the following suggestions for the community.
The community includes product vendors, evaluators, national certification bodies, procurement professionals,
accreditation officials and systems integrators — to name a few.

"Keeper" of Evaluated Products Lists

Find a "keeper" for the lists of nationally evaluated products. Everyone can profit from others' work if
some registry existed which points to evaluations completed internationally. Some international organization, such
as the United Nations, could be approached to maintain this registry. (It appears that in the new world order,
NATO may be looking for some jobs to do!)

Reciprocal Evaluations

Develop reciprocal evaluations using the three criteria. If a registrar could be found, this may open the
way for the negotiation of international mutual recognition of evaluations. There is some work going on now in
this regard between the TCSEC and the CTCPEC, or U.S. and Canada. In the near term, a single list of evaluated
products is beyond our reach. But imagine the benefits to be gained by having a coordinated worldwide list of
evaluated security products!

International Standards for Trusted Systems Criteria

Develop an international standard for trusted systems criteria. Even better than a single list of products
evaluated against several criteria would be a single international trusted systems criteria standard. Is anybody trying
to coordinate the various trusted systems criteria and the ISO? Clearly the community will profit if eventual ISO
standards in security services can be provided by evaluated products.

Universally accepted standards are vendor driven. Vendors naturally push the standards which they do
offer or can offer in their own products. But, having several international security criteria, the vendors are not
going to be economically able to support all of the criteria. It is therefore important to have this criteria coordinated
closely with the international standards committees.

Evolution of Technology

Perform more analysis, such as the paper in 14th National Computer Security Conference [1]. This paper
compares the requirements of TCSEC Class B3 and ITSEC example class F-B3, ES. The comparison of specific
products to potential evaluations (Targets of Evaluation) sheds a much needed light on differences and similarities
in these criteria. The real burden is on trusted systems professionals to stay abreast of this evolution in technology,
and attempt to inform the rest of the community. Such participation in the process results in more consistent
practices internationally and diminished ambiguity in reporting results.

151

Bibliography

[I] Branstad, Dr. Martha, et al, "Apparent Differences between the U.S. TCSEC and the European ITSEC",
Proceedings: 14th National Computer Security Conference, Vol 1, page 45-58, October 1991.

[2] Canadian System Security Centre, Communications Security Establishment, Government of Canada, The
Canadian Trusted Computer Product Evaluation Criteria (CTCPEC), Version 3.0., April 1992.

[3] Department of Defense, Trusted Computer System Evaluation Criteria (TCSEC), DoD 5200.28-STD,
December 1985.

[4] Infomatics, "Security Survey", VNU Business Publications, Vol. II, No. 7, page 74, July 1990.

[5] Information Technology Security Evaluation Criteria (ITSEC), Provisional Harmonized Criteria, Version
1.2. 28 June 1991.

[6] Information Technology Security Evaluation Manual (TTSEM), Commission of the European Communities,
Draft V0.2, 1992.

[7] National Computer Security Center, Trusted Network Interpretation of Trusted Computer System
Evaluation Criteria, NCSC-TG-005, 31 July 1987.

[8] National Computer Security Center, Trusted Database Management System Interpretation of the Trusted
Computer System Evaluation Criteria, NCSC-TG-021, Version 1, April 1991.

[9] National Computer Security Center, Computer Security Subsystem Interpretation of Trusted Computer
System Evaluation Criteria, NCSC-TG-009, Version 1, 16 September 1988.

[10] National Computer Security Center, Trusted Product Evaluations, A Guide for Vendors, NCSC-TG-002,
Version 1, 22 June 1990.

[II] National Computer Security Center, Rating Maintenance Phase, Program Document, NCSC-TG-013,
Version 1, 23 June 1989.

152

An Example Complex Application for High-Assurance Systems

Frank L. Mayer* Steven J. Padilla

The Aerospace Corporation
955 L'Enfant Plaza, SW
Washington, DC 20024

(mayer@aero.org)

SPARTA, Inc.
9861 Broken Land Parkway

Columbia, MD 21046
(smaug@columbia.sparta.com)

Abstract

A challenging problem is the development of sophisti-
cated applications for multilevel secure systems without
the undesirable introduction of application code in the
trusted portion of the system. This paper discusses is-
sues related to such applications and presents a straw
man design for a particularly complicated application,
a multilevel graphical window system, which, unlike
similar multilevel window system designs, can be im-
plemented entirely in untrusted software. The straw
man presented provides the user a multilevel view of
system resources and allows the user to interact with
applications executing at different security levels. Be-
cause no window system software need be trusted, this
design is appropriate for high-assurance systems.

1 Background and Motivation

With the need for multilevel secure (MLS) trusted sys-
tems increasing, the natural problem of applying these
systems to "real world" circumstances has arisen. A
root of this problem is the lack of available applica-
tions that allow MLS system users the same flexibility
they have become accustomed to on untrusted systems.
Unfortunately, "applications for trusted systems" too
often are turned into "trusted applications for trusted
systems." In [23], Schaefer and Schell noted:

The designers of a trusted system have two
primary goals: the first is to reduce the size
and complexity of the security kernel; the sec-
ond is to produce a complete reference mon-
itor implementation. When one is successful

'This paper reflects work completed in September 1990 un-
der DARPA contract F29601-87-C-0071 while Mr. Mayer was
affiliated with SPARTA, Inc.

in meeting these goals, it is unnecessary to
further consider the nature of untrusted code
in the system.

Whereas the trusted system designer's goal is to com-
pletely and correctly implement the system security
policy, the goal of the application designer should be
to develop the application entirely in untrusted code.
In general, the application designer should not need to
consider how the application impacts system security,
but rather how system security impacts the application.

A common misconception is that applications that
provide users with a multilevel view of system resources
must be trusted. To the contrary, an application that is
sensitive to the underlying MLS environment can usu-
ally be implemented entirely with untrusted code. For
example, the command interpreter in an MLS system
is typically both aware of the MLS environment and
untrusted. Such applications should:

• recognize and understand security labels, and use
these labels to prevent users from attempting ac-
tions that will fail; and

• be designed to live within the security constraints
typically enforced by current MLS products (e.g.,
the "no write down" constraints of the Bell-
La Padula model's *-property [10, 11]).

Building untrusted applications to be aware of an MLS
environment is a challenging, but practical task. The
application designer must be cognizant of the under-
lying security policy and build the application accord-
ingly [8, 15, 24].

Most existing application software was not developed
with multilevel security in mind and often such appli-
cations have conventions that do not permit easy move-
ment to an MLS environment. For example, a common
practice is to use "well known" globally accessible files

153

or directories to store temporary information (e.g., the
/tmp/ directory in UNIX1). In an MLS environment,
if users at different security levels use the application
(e.g., operating system utilities, text editors, spread
sheets), it becomes impossible to use a single, well
known object for this purpose (i.e., higher level sub-
jects would otherwise be able to "write down"). Oper-
ating system design can avoid some such circumstances
(e.g., see [16, 21]). However, in general, the application
designer must use programming conventions to avoid
potential conflicts with the system security policy.

In our experience, an increasingly common applica-
tion design approach is to give a portion of the appli-
cation software privilege with respect to the underly-
ing trusted computing base (TCB)2 in order to elimi-
nate problems between the application software and the
MLS security policy. While this approach expedites the
implementation of the application, it has several neg-
ative consequences. By making application software
trusted, the application developer has in effect modified
the underlying TCB, and therefore potentially invali-
dated the assurances provided by any previous techni-
cal evaluation. In practice, some modifications may be
demonstrably minor and manageable. However, modi-
fications that change the basic flow of information (e.g.,
by allowing application code to "write down") are much
more difficult to verify as safe. Even if the applica-
tion developer is privy to all the design information,
verification evidence, coding standards, and evaluation
data available for the trusted system, the task of pro-
viding credible assurance that the application software
does not violate the basic policy of the system is non-
trivial. For example, Ames and Keeton-Williams noted
that even when the trusted portion of the application is
minimized to the absolute minimum necessary (in their
case, a simple downgrade function), the task of showing
correct security operation is surprisingly difficult [8].

If "trusted applications" were limited to those which
absolutely required the ability to violate the system
security policy (like downgrading), half of the applica-
tion design problem would be solved. However, a ten-
dency is to make application software trusted for rea-
sons other than security relevance. Specifically, "conve-
nience" and loosely defined "performance" reasons are
often given for such design decisions. A "convenience"
argument should rarely (if ever) be acceptable. This

1 UNIX is a registered trademark of AT&T.
2 A TCB is defined by [2] to be the "totality of protection

mechanisms within a computer system." For high-assurance
trusted systems (i.e., B3, Al), the TCB would primarily con-
sist of an implementation of the reference monitor concept such
as a security kernel (see [7, 9]).

argument is typically asserted because the application
designer lacks sufficient understanding or insight into
an MLS programming environment (e.g., "it was sim-
pler to make the application privileged and trust it not
to violate the policy than to re-design the application
to function within the system security constraints").

Performance issues are more difficult to assess. Given
appropriate justification, performance may be sufficient
rationale to include non-security relevant software in
the trusted portion of the system. However, the justifi-
cation must be great and the complexity and privilege
of the trusted software limited [6, 7]. A suggested ap-
proach for building a strong "performance" argument
is analogous to a traditional technique used to solve
a similar performance issue with high-level languages,
where a common practice is to initially develop an ap-
plication entirely in a high-level language. Then, once
the application is completely implemented, a few crit-
ical "bottle-neck" sections of the code are rewritten in
a machine language. This technique provides substan-
tial performance increases while maintaining nearly all
the benefits of high-level languages. An analogous ap-
proach for application design on trusted systems is to
implement the entire application with untrusted code
and then determine if and where performance is a prob-
lem. Such an approach will achieve greater justification
and limitation of the need (if any) for trusted code, just
as the need for machine language can be limited with-
out severe impacts on performance.

In this paper, we present a straw man design for a
complex application for MLS trusted systems—in par-
ticular, an MLS window system. A window system
application was chosen both because it is a good exam-
ple of a complex application and because there is great
need for such an application on high-assurance trusted
systems.

2 Design Issues and Assump-
tions

The intent of this straw man is to present a design
strategy for an MLS window system (WS) which can be
implemented on a high-assurance trusted system (i.e.,
B3 or Al according to [2]) without adverse impact on
the assurance of the underlying TCB (i.e., with no or
very little trusted WS code).

A modern WS is a particularly complicated set of
application code supporting sophisticated graphic pre-
sentation formats, rich application interfaces, power-
ful user interfaces, inter-application communication,

154

management of complex devices (i.e., graphic termi-
nals), device-independent programming protocols and
conventions, and management of multiple application
"windows." Because of this complexity, it is vital to
ensure that the vast majority, if not all, of the WS
software remains untrusted for at least the following
reasons:

1. As previously noted, even the simplest addition of
trusted code can invalidate the assurance of the
underlying system, and certainly the addition of
large amounts of complex trusted code is in oppo-
sition to a high-assurance design.

2. Since the WS software remains untrusted, the WS
developer has great freedom to redesign, modify,
maintain, and tune the WS software without con-
cern for the protection of data. Given the complex
nature of a WS, and the rapid developments occur-
ring in WS standards, this development freedom
is important for future enhancements and main-
tenance. Even in low (Bl) or medium (B2) as-
surance systems, the ability to maintain, change,
and evolve WS software without affecting the TCB
may be compelling reasons to use the design ap-
proach suggested by this paper.

Using the X window system paradigm [20], a WS
allows clients to interact with servers via an accepted
protocol. Clients are applications that use a server's
services to display data and to receive input from a
graphic terminal. A server manages the terminal hard-
ware, controlling both the screen display output, and
keyboard (and mouse) input. Essentially, a server
"owns" the terminal and allows applications to inter-
act with the terminal through its services. The server
provides clients with a standard, device-independent
interface for windowing and graphic-display functions.

The MLS window systems that were currently be-
ing developed or proposed at the time this paper was
written (e.g., see [4, 12, 13, 22]) all incorporate object
labeling and access mediation within a large portion of
the window system, typically at least the server, neces-
sitating the inclusion of complex WS software within
the TCB. Such an approach may be successful for low-
assurance (Bl) and possibly medium-assurance (B2)
systems. However, for high-assurance systems, the
introduction of large, complex WS function into the
TCB is incompatible with the concept of a reference
monitor and the B3 system architecture requirements
[2, 7, 18, 22, 23]. In fact, none of the functions of a WS

are inherently required for the enforcement of the se-
curity policy, and therefore would be difficult to argue
as necessary for inclusion within the TCB as suggested
in [7,23].

The straw man presented herein provides a multilevel
secure user interface via a graphic workstation, with a
minimum of trusted code. In fact, as will be discussed,
no code inherent to the WS need be trusted.

This MLS WS design exploits the natural communi-
cation paths provided by systems that support a Bell-
La Padula style security policy. In such systems, sub-
jects are allowed to read objects at security levels dom-
inated by (are lower than) the subject's security level
and to modify objects at security levels that dominate
(are higher than) the subject's security level3. These
capabilities allow coordination between subjects of dif-
fering security levels only in accordance with the sys-
tem security policy (i.e., information may "flow up",
but not "down"). Such capabilities are central to the
success of this design.

3 Device Management Issues

The MLS WS design expects the underlying TCB to
treat the graphic terminal in a rather non-traditional
manner. It is common for trusted systems to imple-
ment a terminal device as one, single-level-at-a-time
device. Any application accessing the device may do
so only in accordance with the mediation rules applied
for all subject-object accesses. Some trusted systems
allow users to change the current security level of the
terminal, via a trusted path, without re-authentication
(e.g., SCOMP [14] and GEMSOS [25]). However, the
terminal still remains single-level at any given moment.

For the MLS WS design, it is essential that the ref-
erence monitor treat the terminal as two separate and
distinct devices—namely an output device (the screen)
and an input device (the keyboard and mouse). While
most current MLS systems do not treat terminals in
this manner, it is a natural approach, especially for

3 "Dominates" is defined in [10, 11]. While the Bell-La Padula
models allow these functions, they do not require them. Most
systems provide "read-down" or "write-up" capabilities for some
objects, but not all. There is in fact very little distinction be-
tween the two forms of access—one form can emulate the other
(e.g., "write-up" can be emulated by a low-level subject writing
an object at its level and a high-level subject "reading down"
to the low-level object). In practice, most Bell-La Padula style
systems provide at least "read-down" capabilities for 'large" ob-
jects such as memory segments or files. The availability of "read-
down" and "write-up" capabilities for a given system can have a
significant performance impact on this design.

155

console devices where the screen and keyboard are typ-
ically two separate physical devices with separate com-
munications ports to the system. GEMSOS, for exam-
ple, implements input and output (and their associate
control functions) as distinct devices [5]. The MLS WS
design also requires the TCB to provide a means for
the user to change these device levels via a trusted path
(although they will remain single-level devices at any
given time), much the same as allowed by SCOMP and
GEMSOS. In the remainder of this paper, we will re-
fer to the current security level of the keyboard and
other input devices (e.g., a mouse) as the terminal in-
put level and the current security level of the screen as
the terminal output level.

The ability to separate input and output as distinct
objects, and to change the device current security lev-
els, are the only trusted features necessary to support
the MLS WS design. Neither of these features are in-
trinsic to a WS and can be provided by a trusted system
as part of its basic terminal management functions.

4 Server Design

To be useful, this design must provide as much com-
patibility as possible (and still meet the high-assurance
goal) with application code written for a standard win-
dow system (e.g., X). Therefore, changes to the client
side of the WS protocol must be minimized (if not com-
pletely eliminated). In the MLS WS design, the MLS
functionality is provided exclusively by the design of an
untrusted server that is aware of the underlying MLS
environment. As previously noted, a WS server pro-
vides graphic-terminal input and output management
services via a standardized protocol. Typically, this
server is implemented as a single monolithic subject
(e.g., a process in Unix [20]) that performs all the de-
sired tasks. In the MLS WS design, the server is divided
into two major functional areas which are distributed
among a number of single-level untrusted subjects (see
Figure 1). These server subjects, which are called ses-
sion managers and screen managers, are described be-
low.

4.1 Session Managers
Session managers have three primary responsibilities:

• service client requests;

• distribute terminal input; and

• manage window buffers.

Session managers are single-level, untrusted subjects.
A client subject interacts with a session manager run-
ning at its security level. This allows clients and servers
(i.e., the session manager) to participate in active, two-
way communication. If clients at differing security lev-
els wish to interact with the same terminal, then it
is necessary to have a session manager active at each
client security level. It is not, however, necessary to
have session managers at all possible security levels.
Rather, when the user changes the terminal input level,
a new session manager can be created (if one does not
already exist at that security level). Given the neces-
sary system support for changing terminal input level,
the creation of a new session manager can be handled
entirely by convention via a traditional login initial-
ization procedure (e.g., via a ".login" file for the Unix
C-shell). Therefore, a session manager will be active at
each security level for which the user has active client
subjects.

Terminal input is directed to the session manager
running at the current terminal input level. This ses-
sion manager decides how to distribute terminal input.
For example, input can be forwarded to a client, sent
to a window within the window buffer, forwarded to
the screen manager, or interpreted as a session man-
ager command from the user. The only input not di-
rected to the session manger is the "secure attention
key," which of course the underlying TCB recognizes
as a request to invoke the trusted path.

Window buffers are single-level "views" of the phys-
ical terminal screen. Every session manger has an as-
sociated window buffer which it manages. Client re-
quests to manipulate the terminal screen (e.g., create a
window, resize a window, input data to a window) are
reflected to the window buffer. Abstractly, a window
buffer can be viewed as a single object, but in reality,
any number of objects may be used to implement the
buffer (e.g., a combination of shared memory regions,
IPC channels, and files). All clients at the same secu-
rity level will have their windows managed by the same
session manager in the same window buffer.

4.2 Screen Manager

Whereas a session manager controls and distributes ter-
minal input, the screen manager is responsible for ter-
minal output. Like the session managers, the screen
manager is a single-level, untrusted subject. However,
unlike session managers, there is only one screen man-
ager per terminal. The screen manager's basic function
is to read all window buffers and display their contents

156

Server

Client

Applications

Session

Managers
Window

Buffers

Screen

Manager

keyboard input
(routed based on

terminal input level)

Keyboard (Mouse)

Figure 1. Overview of the MLS Window

Screen

System Design

on the terminal's graphic screen. The intra-server pro-
tocol between session managers and the screen manager
must be sufficiently descriptive to facilitate graphic dis-
play operations. The screen manager decides the or-
der and placement of windows displayed on the screen,
based upon information provided by the session man-
agers (window dimensions, resizing, expose or hide win-
dows). While the screen manager controls the physical
terminal screen, it does not necessarily service all ap-
parent screen functions. For example, a client request
to "read" the contents of a given location on the screen
may actually be serviced by a session manager, which
would return the requested information from its win-
dow buffer and not the physical screen.

Since the screen manager is a single-level untrusted
subject that manipulates the screen, it must run at the
terminal output level. In the simple case, the terminal
output level (and therefore the screen manager level)

would be session high (i.e., the highest level the user
is allowed to use at that terminal). This would allow
the screen manager to read all possible window buffers
("read-down" is allowed). Thus, one screen manager
can service all session managers running at separate
security levels without the necessity of trusted code.

In a more general design, the user can change the
current terminal output level and therefore the current
screen manager level. This would require the screen
manager to be restarted; essentially creating a new
single-level subject as the screen manager at the new
terminal output level. Of course, a screen manager can
only read the window buffers at its level or a lower level.
So if there exists session managers at a higher security
level than the current terminal output level, the screen
manager will not be able to display those windows.

The advantage of allowing the screen manager to be
restarted at a new security level is that users can limit

157

their view of the system resources. For example, if a
user, whose current screen manager is running at Top
Secret, wished to ensure that the display contained only
Secret information, the user would change the terminal
output level to Secret resulting in a new screen manager
at Secret. Since the screen manager is untrusted, the
user is guaranteed that any information displayed is no
higher than Secret. In an ideal design, multiple screen
managers would co-exist much the same as multiple
session managers co-exist. In this scenario, the screen
manager executing at the current terminal output level
would have control of the screen. This would allow the
user to switch the screen level without the overhead of
restarting a new screen manager.

The disadvantage of switching screen managers or
allowing multiple screen managers is that the interac-
tion between session managers and screen managers is
complicated. An initial design approach would be to
implement a fixed, session high screen server and work
incrementally towards more dynamic screen manage-
ment. The fixed, session high screen manager approach
will require the user to re-initiate the session (i.e., lo-
gout and login) in order to change the terminal output
level. Nonetheless, a single, session high screen server
will still allow the user to concurrently display and ma-
nipulate windows at multiple security levels.

5 Clients and User Interactions

The above server design requires some communication
between the screen manager and session managers in
order to properly coordinate display operations. To il-
lustrate, assume the terminal output level is currently
Top Secret and the terminal input level is Secret. In the
course of operation it is possible for a Secret client to
create and display information in a manner that the
user did not intend. An example may be a graph-
ics drawing program where the user's keyboard in-
put causes the client to display graphic images. The
client "displays" these images by sending requests to
the Secret session manager which translates the client's
requests into screen manager instructions and places
these instruction in the Secret window buffer. The Top
Secret screen manager would then display the new con-
tents of the client's window. An input mistake would
be recognized by the user only after the image is dis-
played by the screen manager. Now we have a situation
where a Secret subject (i.e., the drawing client) must be
given new instructions (i.e., re-draw the image) based
upon information from a Top Secret subject (i.e, the

screen manager)—see Figure 2. This would seemingly
be a violation of a Bell-La Padula style security policy
model (i.e., a "write-down").

However, the recognition and correction of the draw-
ing error is performed by the human user. The user
sees the mistake displayed on the screen and types new
instructions to correct the error. The user's keyboard
input (which recall is Secret) is directed by the Secret
session manger to the Secret client drawing program,
which would once again send the appropriate requests
to the Secret session manager to cause the new image
to be displayed.

This example illustrates a more general observation
about an MLS window system. The "downward" feed-
back (i.e., the coordination between the screen man-
ager display of a window and the client subject which
owns the window) usually occurs via the human user
outside of the computer. This is an important obser-
vation. Since client, session manager, and screen man-
ager subjects are all single-level untrusted subjects, an
underlying trusted system will not allow this "down-
ward" feedback to occur without the inclusion of spe-
cial trusted code (which this design is trying to avoid).
However, since "downward" feedback occurs naturally
via the human user, no violation of the system security
policy exists and no trusted code is necessary.

Another simple example of "downward" feedback is
exposing or hiding windows. For example, in the above
scenario, the screen manager could currently have a
Top Secret window displayed "on top of" a Secret win-
dow that the user wishes to view. In order to expose
the Secret window, the user would input the appro-
priate command directing the Secret client and session
manager to instruct the Top Secret screen manager to
expose the Secret window.

It appears that the vast majority (if not all) actions
requiring this "downward" information flow occurs nat-
urally via the human user interface, thereby avoiding
the need for trusted application software.

Another common feature that a WS provides is a cut
and paste function. Abstractly, a cut and paste func-
tion allows information in one window to be copied into
a cui buffer which then may be imported to another
window. In an MLS window system, it is desirable to
allow cut and paste functions between windows at dif-
fering security levels. In our design, this function can
be implemented in a number of ways. For example, to
cut a section from an Unclassified window and paste
it to a Secret window, the user must first ensure that
the terminal input level is set to Unclassified to allow
manipulation of an Unclassified window (see Figure 3).

158

Screen
(Top Secret)

;"\

Screen fwaiiaywi

>' Top Secret

h

User

N
Downgrade

Path
/

Secret f Window

J~-

Buffer

y~--~ *m-

Keyboard
(Secret)

Session
Manager

Client

Computer

Figure 2: Example: "Downward" Feedback Occurs via the User Outside of the Computer

The user can then select the appropriate window re-
gion and request a "cut" operation. The client that
owns the window would ensure that the selected region
is copied into the Unclassified cut buffer. The cut buffer
could be implemented in a number of ways, but for this
example assume that it is a "well known" file object.
The key point is that the cut buffer is an object and
therefore must have a single security level (i.e., Unclas-
sified in this case). To fully accommodate a cut and
paste function, a cut buffer must exist for each active
security level (i.e., one for each session manager).

In order to "paste" the information in the Unclassi-
fied cut buffer to a Secret window, the user must change
the terminal input level to Secret (which allows manip-
ulation of Secret windows). The user can then issue
a conventional "paste" operation with one possible ex-
ception; the user may be required to specify the se-
curity level of the cut buffer from which to paste—in
this case Unclassified (otherwise the Secret client would
likely use the Secret cut buffer by default). Since a Se-
cret subject is permitted to read an Unclassified object,
the paste operation will succeed.

The actual implementation of a cut and paste func-
tion will likely be more complex and innovative than
the above example. For instance, the "cut" opera-

tion in the above example can be performed by the
Secret client "reading down" to the Unclassified win-
dow buffer, avoiding the need for the user to change
the terminal input level in the middle of the cut and
paste function. Also, pull down menus for specifying
cut buffer security levels can moderate any undesir-
able user interface impact. The important concept is
that operations, like cut and paste, which are in accor-
dance with the system security policy, can (and should)
be implemented by programming convention, without
trusted code.

Notice that the above cut and past example does not
allow "downward" pasting (e.g., cutting from a Secret
window and pasting to an Unclassified window). Such
a flow is in violation of the system security policy. This
constraint leads to a natural question: Since a cleared
individual is trusted to properly review and sanitize in-
formation, why not allow the individual to do so via an
automated cut and paste function? The answer to this
question is apparent in the basic distinction between
[untrusted] software and human users. In a computer,
information can be masked or hidden from the user by
illicit software (i.e., a Trojan horse). Even in very sim-
ple forms (i.e., ASCII text), seemingly harmless infor-
mation may contain illicit data which is difficult, if not

159

Secret
Window Buffer

Unclassified
Cut Buffer

Figure 3: Example: Cut and Paste Across Security Levels

impossible, for a human to detect [19]. To illustrate,
examine the following paragraph:

Information ia easy to hide from a huaan being

•ithin formatted text. Take for example thla
simple paragraph. From a potential revieaer's

perspective, this text ia harmless unclassified

material. Hosever, buried sithin the formatting

of thia taxt ia a aacrat message that can

be easily decoded by a computer bat ia nearly

impossible for a revieser to recognize. Tha

contant of thia paragraph certainly does not

convoy tha aacrat message by any overt means.

Hovaver, tha right justified format haa tha

message encoded within it.

Other than the fact that the paragraph states that
an illicit message is encoded within the text format,
it is very unlikely a typical user would recognize the
existence of hidden information (see the Appendix for
encoding scheme). A trusted downgrader that simply
displayed information to the user and then allowed the
information to be downgraded would be highly suscep-
tible to this type of an attack, especially if the user
often downgrades data.

In McHugh's design of a high-assurance downgrader
[19], the type of encoding scheme used in the above ex-
ample is addressed by removing any extra spaces (and
therefore any special formatting). However, McHugh
noted that other forms of encoding may exist and ulti-
mately the user must assert that no illicit encoding ex-
ists. McHugh's and other similar high-assurance down-

grader designs [8, 17] exhibit several common charac-
teristics:

• only simple forms of data (e.g., ASCII text) are
handled;

• the "trusted" portion of the downgrader is very
simple and therefore verifiable; and

• the user interface is necessarily cumbersome to
force the user to carefully scrutinize the data be-
fore downgrading.

Although implementing a downgrade cut and paste
function in a window system is conceptually similar to
these other designs, such a mechanism has at least the
following significant differences:

• the trusted portion of the downgrader must in-
clude all software capable of influencing the dis-
played text (which would likely include server soft-
ware and some clients), leading back to the situa-
tion where complex software must be trusted and
thereby precluding a high assurance design; and

• the ability to downgrade sophisticated data forms
(e.g., graphics, special fonts) greatly increases the
ability of illicit code to hide classified information
in seemingly unclassified data (e.g., subtle changes
in font sizes, slight pixel adjustments in graphics).

These differences make an intuitively safe operation
(from the user's perspective) impractical to implement

160

in a window system given the current state-of-the-art
for high-assurance trusted systems.

Nothing in the MLS WS design prevents a user from
intentional sanitizing information through re-keying
the data. For example, assume the terminal output
level is Top Secret and the terminal input level is Se-
cret. The user can view Top Secret information on the
terminal screen and type in the sanitized information to
a Secret window. However, in this situation the burden
for ensuring that only appropriate information is down-
graded is placed entirely on the user. The WS gives the
user no guarantee of the accuracy of the data displayed
other than the terminal output and input levels.

6 User Visible Labels

Ultimately, the issue of labeling windows must be ad-
dressed. We argue that no security labeling of win-
dows is required for this design. The reason is simple—
windows are abstractions created by untrusted software
out of TCB provided objects, and the TCB will ensure
that the underlying objects are properly labeled and
protected.

The objects implemented by the TCB in this design
are the terminal input and output objects—nothing
more or less. Windows are abstractions created by
the untrusted Screen Manager, and as such are not
abstractions known to the TCB. In essence, windows
are analogous to abstractions created by any untrusted
application (e.g., forum meetings in Multics, a spread
sheet). It was never the intent that a high-assurance
TCB should understand and manage all abstractions in
a system [23, 9, 7]. Rather, a well-designed TCB pro-
tects system resources by grouping them into primitive
abstractions called objects. The untrusted portions of
the operating system and applications software can cre-
ate more complex abstractions such as windows out of
these TCB objects. Nonetheless, no matter what ab-
stractions are created by untrusted software, the fun-
damental protection of system resources provided by
the TCB will not be changed (i.e., the security policy
cannot be violated by untrusted software).

The concept of implementing windows by non-TCB
software is unlike other approaches typified by the re-
cent compartmented mode workstation effort at Mitre
[22,26, 27], which incorporates the window system soft-
ware into the TCB.

A common argument for having the TCB label win-
dows is that data becomes overclassified and must even-
tually be "downgraded" to its original security level.

Another argument is that without reliable window la-
bels, the user can accidentally confuse sensitive in-
formation with non-sensitive information. Because of
these concerns, it can be argued that trusted window
labeling, coupled with a trusted "downward" cut and
paste function, is needed. These arguments, however,
lead back to the situation of trusting large portions of
the WS software, both to reliably label information and
to provide the appropriate guarantees for the "down-
ward" cut and paste function.

As noted previously, complex WS software in the
TCB is incompatible with a high-assurance design, and
certainly with a potentially dangerous "downgrade"
function. Since, in the MLS WS design, the termi-
nal's output and input levels can differ, the user can
avoid data overclassification while still having a multi-
level view of the system resources. In a typical MLS
system, users must login at the level of the most sensi-
tive data they wish to view; resulting in any newly cre-
ated objects being labeled with that high level. In the
MLS WS design, the user can view objects (through
windows) at any level at or below the current termi-
nal output level, while entering new data at the (po-
tentially lower) terminal input level. While the screen
manager may display object security levels on windows,
any labels, other than the terminal input and output
levels, are unreliable.

Potential criticism of this approach is that the un-
trusted screen manager may attempt to spoof the user
into unintentionally downgrading information through
mislabelling of windows. The response to this criticism
is simple. Any time an individual chooses to down-
grade information, great care must be taken to en-
sure that the information being downgraded is clearly
not classified. As the example in the Appendix illus-
trates, downgrading is technically unsafe with or with-
out TCB-provides labels. Downgrading should be the
exception, not the rule! The situation where the screen
manager prints bogus security levels is no different than
application code printing bogus labels on printed out-
put in a System High or Dedicated mode system. Ulti-
mately, the user must ensure that the data are appro-
priate for downgrade based on its content and not on
any outwardly visible labels on windows. In the MLS
WS design, the user can always limit the level of infor-
mation on the screen by changing the terminal output
level (and therefore the screen manager level) to a lower
security level.

In the case of a "trusted downgrade" cut-and-past
function, a prominent consideration is the reliability
of the software capable of violating the system secu-

161

rity policy (including that responsible for displaying the
data to the user). As discussed in the previous section,
high assurance cannot be obtained for large amounts of
complex software like a WS terminal server. Depending
on such software to be reliable and "leak proof may
be more dangerous than the benefit achieved. Such
concerns are indeed the basis for the greater risks a
higher assurance system can manage versus a lower as-
surance system [1, 3]. As more MLS technology (e.g.,
local and wide-area networks, file servers, workstations,
databases) is proliferated, the problem of over classified
data, which is common in System High environments,
will dissipate, mitigating the need for downgrade func-
tions.

The MLS WS straw man does leave one labeling is-
sue open—a means by which the user can determine
the current terminal input and output levels (and to
allow reliable communication when the trusted path is
invoked). This is not a simple problem to resolve. An
straightforward solution would be to "yank" control of
the screen from the screen manager, re-initialize the
screen, and give the trusted path software control of the
screen. This approach is awkward and expensive, espe-
cially when the output device is complex and graphics
are involved. A more complicated solution would be to
virtualize the screen, saving a small portion of the dis-
play for the TCB to display security labels. However,
this approach has the same shortcomings discussed pre-
viously (i.e., requires complex, trusted screen manage-
ment). Ultimately, the solution may be for graphic ter-
minals to provide a separate, simple output device to
allow TCB-to-user communication. An example may
be a small LCD display on the keyboard or some other
separate, simple, and distinct display. Such a display
would be used for TCB-to-user communication during
invocation of the trusted path without interrupting the
user's normal display. Other times, this display would
show the current terminal input and output security
levels so that the user is constantly aware of the termi-
nal's current security levels.

This issue is one of many to be addressed in a more
detailed examination of this straw man design.

7 Conclusions

The objective of this straw man is to demonstrate that
complicated, multilevel secure applications can be built
on trusted systems without complex trusted application
software. While several open issues remain, the straw
man design for an MLS window system presented ap-

pears to be feasible. The advantages of an entirely
untrusted MLS window system are great. The window
system software can be maintained, updated, and mod-
ify without concern for the underlying system security
policy. New and better protocols and conventions can
be introduced as they evolve. And probably the best
advantage is that, by excluding complicated window
system software from the trusted portion of the sys-
tem, an MLS window system can be implemented on
high assurance systems. Undoubtedly many issues re-
main to be addressed in the next design stage of the
MLS window system proposed (e.g., performance, visi-
ble labels). However, an approach for developing com-
plicated applications for trusted systems, similar to the
straw man design described herein, can minimize, if not
eliminate, the need for trusted application software.

References

[1] Computer Security Requirements. CSC-STD-
003-85, National Computer Security Center, Fort
Meade, MD, June 1985.

[2] Department of Defense Trusted Computer System
Evaluation Critera. December 1985.

[3] Technical Rationale Behind CSC-STD-003-85:
Computer Security Requirements. CSC-STD-
004-85, National Computer Security Center, Fort
Meade, MD, June 1985.

[4] Final Evauation Report of AT&T System V/MLS.
CSC-EPL-89/003, National Computer Security
Center, Fort Meade, MD, 18 October 1989.

[5] Private communication between Steve Padilla and
Albert Toa, September 1990. Unpublished E-mail
Coorespondance.

[6] S.A. Ames Jr. Security Kernels: A Solution or a
Problem? In Proc. 1981 IEEE Symposium on Se-
curity and Privacy, pages 141-150, Oakland, CA,
April 1981. IEEE.

[7] S.A Ames Jr., M. Gasser, and R.R. Schell. Se-
curity Kernel Design and Implementation. IEEE
Computer, pages 14-22, July 1983.

[8] S.A. Ames Jr. and J.G. Keeton-Williams. Demon-
strating Security for Trusted Applications on a
Security Kernel Base. In Proc. 1980 IEEE Sym-
posium on Security and Privacy, pages 145-156,
Oakland, CA, April 1980.

162

[9] James P. Anderson. Computer Security Technol-
ogy Planning Study. Technical Report ESD-TR-
51, vols. I and II, Electronic Systems Division,
Bedford, Mass., October 1972.

[10] D.E. Bell. Secure Computer Systems: A Refine-
ment of the Mathematical Model. Technical Re-
port MTR-2547, vol. Ill, Mitre, Bedford, Mass.,
December 28, 1973.

[11] D.E. Bell and L.J. La Padula. Secure Computer
System: Unified Exposition and Multics Interpre-
tation. Technical Report MTR-2997, Mitre, Bed-
ford, Mass., July 1975.

[12] M.E. Carson and et al. Fron B2 to CMW: Building
a Compartmented Mode Workstation on a Secure
Xenix Base. In Proc. Third Aerospace Computer
Security Conf., pages 35-43, Orlando, Forida, De-
cember 1987.

[13] P.T. Cummings and et al. Compartmented Mode
Workstation: Results Through Prototyping. In
Proc. 1987 IEEE Symposium on Security and Pri-
vacy, pages 2-12, Oakland, CA, April 1987.

[14] L.J. Fraim. Scomp: A Solution to the Multilevel
Security Problem. IEEE Computer, pages 26-34,
July 1983.

[15] D. Gambel and S. Walter. Retrofitting and De-
veloping Applications for a Trusted Computing
Base. In Proc. 11th National Computer Security
Conf., pages 344-346, Baltimore, Maryland, Oc-
tober 1988.

[16] V.D. Gligor and et al. On the Design and the
Implementation of Secure Xenix Workstations. In
Proc. 1986 IEEE Symposium on Security and Pri-
vacy, pages 102-117, Oakland, CA, April 1986.

[17] T. Hinke, J. Althouse, and R.A. Kemmerer. SDC
Secure Release Terminal Project. In Proc. 1983
IEEE Symposium on Security and Privacy, pages
113-119, Oakland, CA, April 1983.

[18] C.E. Irvine and et al. Genesis of a Secure Ap-
plication: A Multilevel Secre Message Prepara-
tion Workstation Demonstration. In Proc. i ?urth
Aeorspace Computer Security Applications Conf.,
pages 30-36, Orlando, Florida, December 1988.

[19] John McHugh. An EMACS-Based Downgrader
for SAT. In Proc. 8th National Computer Secu-
rity Conf., pages 113-136, Gaithersburg, Mary-
land, September-October 1985.

[20] A. Nye, editor. X Protocol Reference Manual.
O'Reilly k Associates, Sebastapol, CA, 1990.

[21] E.I. Organick. The Multics System. The MIT
Press, Cambridge, Mass., 1972.

[22] J. Picciotto. Trusted X Window System, Volume
1: Design Overview. Technical Report MTP-288,
vol. I, Mitre, Bedford, Mass., February, 1990.

[23] M. Schaefer and R.R. Schell. Toward an Under-
standing of Extensible Architectures for Evalu-
ated Trusted Computer System Products. In Proc.
1984 IEEE Sympostum on Secuirty and Privacy,
pages 41-49, Oakland, CA, April 1984.

[24] E.R. Schallernmuller, R.P. Cramer, and B.T.
Aldridge. Development of a Multilevel Data Gen-
eration Application for GEMSOS. In Proc. Fifth
Computer Security Applications Conf, pages 86-
90, Tucson, Arizona, December 1989.

[25] W.R. Shockly and D.F. Warren. Description
of Multilevel Secure Entity-Relationship DBMS
Demonstration. In Proc. 11th National Computer
Security Conf., pages 17-20, Baltimore, Maryland,
October 1988.

[26] J.P.L. Woodward. Exploiting the Dual Nature of
Sensitivity Labels. In Proc. 1987IEEE Symposium
on Security and Privacy, pages 23-30, Oakland,
CA, April 1987.

[27] J.P.L. Woodward. Security Requirements for Sys-
tem High and Compartmented Mode Worksta-
tions. Technical Report MTR-9992, Rev. 1, Mitre,
Bedford, Mass., November 1987.

163

Appendix

The hidden message in the following paragraph is the
word "COVERT."

Information i* easy to hid* from a human being
aithin formatted text. Take for example this
simple paragraph. From a potential revieaer's
perspective, this text ia harmless unclassified
material. However, buried aithin th* formatting
of thia text is a secret message that can
be easily decoded by a computer but is nearly
impossible for a revieaer to recognize. The
content of this paragraph certainly does not
convey the secret message by any overt means.
However, the right justified format has the
message encoded aithin it.

00011 = 3 = C
01111 = 15 = 0
10110 = 22 = V
00101 = 5 = E
10010 = 18 = R
10100 = 20 = T

This is a very simple encoding scheme. More sophis-
ticated schemes exist that will provide much greater
bandwidth.

The algorithm for encoding bits in the text is as fol-
lows:

Examine all words that contain the letter "t",
ignoring all words that begin either a line or a
sentence. If a selected word has greater than
one space before it, a binary "1" is signaled.
If there is exactly one space before the word,
a binary "0" is signaled.

Information is represented in bits via the following
trivial encoding scheme:

Assign each letter of the alphabet an ordinal
value such that A=l, B=2,...,Z=26. Assign a
blank space the value 0. Each letter is then
encoded in a 5 bit binary number. These
binary numbers are concatenated into a bit
stream and hidden in the text with the above
algorithm.

The paragraph is repeated below with the encoded
binary digits explicitly included (in place of a space).

Information is easyOto hide from a human being
aithinOformattedOtext. Take for example lthis

simple paragraph. From a 1potential revieaer's

perspective,0this ltext is harmless unclassified

material. Hoaever, buried laithin lthe Iformatting

of IthisOtext is a laecret message lthat can

be easily decoded by aOcomputarObut is nearly

impossible for a revieaerOto recognize. The

content of lthis paragraphOcartainly does lnot

convey ItheOsecret message by anyOovert means.

Hoaever, ItheOright 1 just ifiedOformat has lthe

message encodedOwithinOit.

Remembering that each letter is encoded in a 5 bit
number, we should get the following message:

164

EXPERIENCE WITH A PENETRATION ANALYSIS
METHOD AND TOOL

Sarbari Gupta Virgil D. Gligor

Rlectrical Engineering Department
University of Maryland

College Park, Maryland 20742

ABSTRACT

We present a penetration-analysis method, an
experimental tool to support it, and the experi-
ence gained from applying this method and tool
to the Secure Xcnix^ source code. We also pre-
sent several properties of penetration resistance,
and illustrate their interpretation in Secure
Xenix using several penetration experiments. We
argue that the properties of reference monitor
mechanisms are necessary but insufficient to
provide penetration resistance for a system.
However, the assurance process for establishing
penetration resistance need not differ from that
required for demonstrating support for access
control policies.

1. INTRODUCTION

The penetration-resistance of a computer sys-
tem is a separate security concern from that of
supporting access control and accountability
policies. Different systems may exhibit the same
degree of penetration resistance, but implement
widely different access control or accountability
policies, or may implement the same policies,
but exhibit different degrees of penetration resis-
tance. Furthermore, not only the effectiveness
of these policies, but that of other policies, such
as that of system availability, depends on the
penetration -resistance of a system.

Despite the obvious importance of a system's
penetration resistance, general methods for sys-
tematic penetration analysis have not been avail-
able. The first attempt at such analysis, the Flaw
Hypothesis Methodology [11|, consists of the
generation of "flaw hypotheses," via largely ad
hoc means, and the confirmation of these hy-
potheses, via system tests. The Flaw Hypothesis
Methodology provides neither a systematic way
of deriving flaw hypotheses nor a means to es-
tablish penetration-test coverage. Using this
methodology, one cannot formally verify any
penetration-resistance properties.

In this paper, we present a new penetra-
tion-analysis method, which (1) provides a sys-
tematic approach to penetration analysis, (2)

©copyright 1992 S. Gupta and V. I). Gligor

'^"Xcnix is a trademark of Microsoft, Inc. Secure Xenix
is an early version ol Trusted Xenix, a product of
Trusted Information Systems, Inc.

enables the verification of penetration-resis-
tance properties, and (3) is amenable to auto-
mation. We also describe an experimental tool,
called the Automated Penetration Analysis
(APA) tool, to support the penetration analysis
method, and present the experience gained from
applying this method and the tool to Secure
Xenix |6] source code. Wc illustrate several
properties of penetration resistance in the con-
text of penetration experiments performed on
Secure Xenix.

Our experience with this penetration-analysis
method and experimental tool leads to three
general observations. First, the penetration resis-
tance of a computer system may not rely exclu-
sively on the penetration resistance of its Refer-
ence Monitor Mechanism [1,12], contrary to
long-standing belief. Penetration resistance in-
cludes additional properties, which differ from
those of the Reference Monitor Mechanism, and
expands the scope of the existing Reference
Monitor properties of isolation and noncircum-
ventability. Thus, penetration analysis gains
added significance in the design, implementa-
tion, and verification of secure systems beyond
that of the Reference Monitor properties.

Second, the ability to verify penetration resis-
tance using source code depends on the ability to
correctly derive validation-check specifications
- which are required to determine the correct-
ness of source code - from abstract penetra-
tion-resistance properties. This derivation is de-
pendent on the design and programming disci-
plines used in system development. For exam-
ple, parameter validation checks may depend on
the semantics of the system call, object type,
and parameter type used; validation checks for
trusted processes may depend on the privilege
acquisition and inheritance disciplines used.
These dependencies suggest that the use of cer-
tain design and programming disciplines may in
fact aid the analysis of penetration-resistant sys-
tems.

Third, the penetration analysis of a computer
system can follow a similar assurance process as
that for access-control and accountability poli-
cies. For example, (1) the penetration-resis-
tance properties must be interpreted in the inter-
nal architecture specifications of a system in an
analogous manner to that used to interpret the
policy models in the top-level specifications of a

165

system [12]; (2) the specification-to-code cor-
respondence must be performed to show that the
penetration-resistance properties (ire preserved
by source code in an analogous manner to that
used to show that access-control invariants are
preserved by source code [14); and (3) penetra-
tion testing must be performed to show that the
penetration-resistance properties are preserved
by object code produced by a (trusted) transla-
tor. Thus, the degree of assurance required for
penetration resistance need not differ from that
for access control and accountability policies.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the theory of
penetration-resistant systems. In Section 3, we
present the Penetration Analysis Method. In
Section 4, we describe the Automated Penetra-
tion Analysis tool structure, illustrate the use of
the tool using a penetration example, and pre-
sent the experiments conducted using the tool.
In Section 5, we discuss the insights gained from
the experiments. Finally, in Section 6, we con-
clude this paper by suggesting directions of future
research.

2. A THEORY OF PENETRATION-RE
S1STANT SYSTEMS

In this section we review the theory of penetra-
tion-resistant systems presented in reference
(7](*). We define penetration as a method of
exploiting system flaws to gain illegal or unin-
tended access to system variables, objects and/or
operations. The notion of access to variables re-
fers to either viewing or altering access and ac-
cess to operations refers to the capability to in-
voke a command or system-internal function.
The terms "illegal" and "unintended" refer to
accesses that violate one or more properties of
penetration resistance. Our definition of pene-
tration does not address illegal accesses obtained
via operational security errors. It only considers
errors in the source code, but not of hardware,
that may cause vulnerability to partial or com-
plete subversion of the security controls of the
system by untrusted user processes and com-
mands.

The penetration-analysis method is based on a
theory of penetration-resistant computer sys-
tems, a model of penetration analysis, and a uni-
fied representation of penetration patterns [7],
The theory consists of the Hypothesis of Pene-
tration-Resistant Systems and a set of design
properties that characterize resistance to pene-
tration. The penetration-analysis model defines
a set of states, a stale-invariant for penetration
resistance, and a set of rules that can be applied
for analyzing the penetration vulnerability of a
system. An interpretation of the Hypothesis of

(*) An extensive sel of references to penetration attempts
in operating systems is included in [7|.

Penetration-Resistant Systems within a given
system provides the Hypothesis of Penetration
Patterns, which enables us to define a unified
representation for a large set of penetration in-
stances as missing check patterns.

The Hypothesis of Penetration-Resistant Sys-
tems states that a system (e.g., a TCP) is largely
resistant to penetration if it adheres to a specific
set of design properties. The set of design prop-
erties, which arc called the penetration-resis-
tance properties, include:

• System Isolation (or Tamperproofness) - en-
sures that the system is isolated (or protected
from tampering) from untrusted user processes.
It involves system call parameter validation, sys-
tem/user address space separation checks and
control of system entry points (e.g., system
privilege checks).
• System Noncircumventability - guarantees
that all object references are mediated by the ac-
cess check modules within the system. Object
references include references to object contents,
object status variables, object privileges and
other subjects.
• Consistency of System Global Variables and
Objects - maintains the invariant assertions that
hold over the global variables, objects and inter-
nal functions of the system.
• Timing Consistency of Condition (Validation)
Checks - assures that the validity of a condition
(validation) check is not lost at the moment
when an action that depends on that check is
actually performed [3j.
• Elimination of Undesirable System/User De-
pendencies - ensures that unnecessary depend-
encies between system and user are not present
in the system [5].

The penetration-resistance properties are cap-
lured in the penetration-analysis model by the
model constants and the state-transition rules
[7|. The model is a state-transition model based
on the policy that a system entity may be altered
or viewed, or a system internal function may be
invoked, only if the set of conditions associated
with the alter/view/invokc access specified by
penetration-resistance properties are validated
in an atomic sequence (with the alter/view/in-
vokc operation itself.) The model defines a sys-
tem state as the set oT integrated flow paths trav-
ersed by the system up to a certain point in time,
a stale invariant for penetration resistance, and a
sel of slate transition rules that define secure
state transforms.

The Hypothesis of Penetration Patterns suggests
that system flaws, which arc caused by incorrect
implementation of the penetration-resistance
properties, can be identified in system (e.g.,
TCP) source code as patterns of incorrect/ab-
sent validation-check statements or integrated
flows that violate the intended design or code
specifications.

166

To represent penetration patterns uniformly, wc
define the notion of the integrated {execution)
flow path within a system call, which consists of
(1) the information flows, (2) the function
calls, and (3) all the conditions checked along
the execution path. An integrated flow path
starts at an entry point of a system call and fol-
lows through various internal functions via
call/return statements until the execution of the
system call concludes. [In this paper, we will in-
terchangeably refer to an integrated (execution)
flow path as an integrated path, an integrated
flow, or a flow path.]

3. THE PENETRATION ANALYSIS
METHOD

Wc use the theory of penetration-resistant sys-
tems to derive the penetration-analysis method.
The Hypothesis of Penetration Resistant-Sys-
tems iclls us that a system becomes vulnerable to
penetration attacks if the penetration-resistance
properties arc improperly implemented by the
system. These properties arc used to derive the
validations (or condition checks) required to be
done prior to the occurrence of various informa-
tion and function flows within the system or
TCI*.

The Hypothesis of Penetration Patterns indicates
that these required validations should be present
in all execution paths within the system. Thus,
(he integrated flow paths provide a way to repre-
sent execution paths in a format which may be
analyzed for the presence/absence of the re-
quired validations. The model supplies us with a
set of rules to systematically analyze the inte-
grated execution paths Tor the presence of the
required checks. Thus, the penetration-analysis
method is a judicious application of the theory
of penetration-resistant systems |7|.

The penetration analysis method consists of
three stages:

Stage I: execution path integration. In this stage,
all the integrated (execution) flow paths for the
system under consideration arc generated using
(information and control) flow based tools on
the system source code.

Stage 2: derivation of the penetration resistance
specifications. In this stage, the penetration-re-
sist;,ncc properties are interpreted in (mapped
to) the given system to generate the set of valida-
tion check specifications, which arc required
for altering/viewing of the global variables and
for invoking internal functions. These valida-
lion-clieck specifications are the penetration-re-
sistance specifications, since they ensure the
penetration resistance for the given system; i.e.,
they are used to verify that the conditions ena-
bling integrated flows satisfy the penetration-re-
sistance properties.

Stage 3: analysis of integrated execution paths. In
this stage, each integrated (execution) flow path
(from Stage 1) is analyzed for adherence to the
penetration-resistance specifications (from
Stage 2) using the model rules, to detect whether
the set of required validation-check statements
is actually present in the path; if absent, the path
is flagged to signify the existence of a possible
penetration-related flaw.

3.1 Execution Path Integration

The integrated (execution) flow paths of Stage 1
are derived from the integration of (he unit infor-
mation flows, the unit function flows (flow of
control from one function to a second), and the
unit condition statements encountered while
tracing an execution path through the TCB
source code. A unit (information or function)
flow is caused by a single program statement.
For example, an assignment statement a = h
causes a unit information flow from h to a; a
function call statement call func2(a) occurring
in function fund causes a unit function flow
horn fund \ofunc2, as well as an unit informa-
tion flow from the actual to the formal parame-
ters of function fund. A unit condition state-
ment enables a unit (information or function)
flow to occur. For example, the conditional ex-
pression of an "if" statement is a unit condition
statement that enables the information and func-
tion flows occurring within the body of the "if"
statement.

A unit information flow is represented as a pair
of <F:V> elements connected by a arrow. A
<F:V> element represents the variable V within
function F. A unit information flow given by
<F1:V1=»F2:V2> implies an information flow
occurring from variable VI in function Fl to
variable V2 in function F2. (Within a unit flow
or condition, the underscore character "_" is
used as a wild-card identifier for any individual
component that is irrelevant for analysis pur-
poses.) Similarly, a unit function flow<F1t-+F2>
implies a unit function flow from F1 to F2. A
unit condition statement <F:C> represents a unit
condition statement C (in "C" language syntax)
that occurs within function F.

Within the source code of the TCB of a system,
wc define the set of all unit information flows,
the set of all unit function flows, and the set of all
unit condition statements. The integrated flow
path may then be represented as an ordered set
of elements, where each clement is a member of
the union of the unit information-flow, func-
tion-flow, and condition sets. In other words,
an integrated execution flow path is a sequential
concatenation of the unit flows and conditions
encountered along a given execution path within
the system source code.

The integrated execution paths that are of inter-
est in Stage 1 above, start at the system interface
and end with i) the altering of a global variable,

167

ii) the viewing of a global variable, iii) the invo-
cation of certain internal functions within the
system. For example, an altering flow path be-
gins with a unit flow or condition in a system
call, SC, and ends with a unit information flow
to the global variable VAR as shown below:

SC:V1=»_:V2 or SC:C or SO-»F ,
.... F:V=»_:VAR

Similarly, a viewing flow path begins with a unit
flow or condition in a system call, SC; contains
a sequence of unit information flows originating
from the global variable VAR through a chain of
other intermediate variables; and ends with a
unit information flow to a variable which is
cither, i) visible at the user interface (UV), or
ii) supplied as an argument (ARG) to an output
(e.g., print) function as shown below:

SC:V=>_:VV or SC:C or SO-»F
F:VAR=»FI:V1,
I1:V1=>F2:V2 I'n-l :Vn-l=»Fn:Vn
Fn:Vn=» _:UV or P:Vn=»pi lilt: ARG

Finally, a flow path terminating with the invoca-
tion of an internal function will contain a se-
quence of unit function flows starting at the sys-
tem call, SC, and ending with the internal func-
tion FUNC. These function flows may be inter-
spersed with the unit condition statements that
qualify the execution path and the unit informa-
tion flows from the actual to formal parameters
of FUNC (these may be useful to establish the
context of invocation of FUNC). A flow path is
represented as:
SC:C, ...
SO+F1, Flt-*F2 , Pn-l(-»Pn,
Fn:VI=»FUNC:ARGl,
Fn:Vn=»FUNC:ARGn,
Fiit-+FUNC

One could argue that, for penetration analysis,
any condition checks wc associate with a func-
tion flow could be replaced by conditions associ-
ated with information flows from actual to for-
mal parameters or vice versa. However, this is
not the case. One simple reason is that some
functions do not have any formal parameters or
return values. Intuitively, there are certain con-
ditions that need to be checked before a process
is allowed to invoke certain system functions and
this translates naturally to conditions associated
with function flows. These conditions arc often
dependent on the context in which the system
function is invoked. 'The context definition may
involve information flows from actual to formal
parameters of the function, signifying that the
function was invoked with a certain type of pa-
rameter.

3.2 Penetration-resistance specifications

Integrated (execution) flow paths begin with sys-
tem-call interfaces, and include information
flows to variables and function flows. This sug-

gests that three types of validations-check speci-
fication are necessary, namely (1) interface vali-
dation-check specifications, which include pa-
rameter validations, or parchecks, (2) valida-
tion-check specifications for information flows
to variables, or varchecks, and (3) valida-
tion-check specifications for function flows, or
funcchecks. These validation checks can be con-
text dependent or context independent (discussed
in Section 5.2 in some detail). Context defini-
tions, which must accompany the validation
check specification, consist of (1) a condition
on functions or variables, (2) one or more func-
tion flows, and (3) one or more information
flows. In contrast, a context-independent, vali-
dation-check specification will not include a
context definition.

Interface validation-check specifications-
'These specifications are derived by interpreting
the isolation or tamperproofness properties of a
system. The predicates parchecks specify the
validation checks required at the interface of a
system (TCB) call entry.

'The syntax of the interface validation-check
specifications used in the tool is:
- context-independent checks:

parchecks (Entry, [checks], ci, '_'), and
- context-dependent checks:

parchecks (Entry, [context], cd, [checks]),
where the Entry denotes a system (TCB) entry
point, the context denotes the context definition,
the flag (ci)cd denotes the context (independ-
ence, checks denotes a set of context-(in)de-
pendenl, validation-check specifications, and
'_' denotes an empty context. For example, the
validation-check specification for the ustat sys-
tem call of Secure Xenix:
parchecks (ustat, [buf is in user space and is

writable], ci, '_'])
is context independent because, regardless of the
type of call, parameter, or object, if the call
(i.e., ustat) returns a value at an address speci-
fied by the user, that address must be in user
space and must be writable. In contrast, the vali-
dation-check specification for the system call
msggcl:
parchecks (msgget, /key /= 1 PC PRIVATE & key

not found in msq table], cd,
/nisgflg specifies IPCCREAT])

is context dependent because user parameter
msgflg must be validated to specify the creation
of a message queue, when the value of the other
parameter key is bound in the context-defining
condition that the message queue is to be public
but does not already exist in the system.

Validation-check specifications for function
flows: These specifications determine the condi-
tions under which an internal system function
can be invoked by a user-level untrusted proc-
ess, and are usually derived by interpreting prop-
erties of noncircumventability and user/system
dependencies. The predicates funcchecks specify

168

Hie validation checks necessary lo invoke such a
function.

The syntax of the validation-check specifica-
tions for function flows used in the tool is:
- context-independent checks:

funcchecks ({•'unction, ci, [checks/, '_'). and
- context-dependent checks:

funcchecks (Function, cd, [context [,(checksJj
where the Function denotes a system (TCI3) in-
ternal function, the flag (ci) cd denotes the con-
text (in)dependencc, the context denotes the
context definition, the checks denotes a set of
validation-check specifications, and '_' denotes
an empty context definition. For example, the
validation check specification
funcchecksipctnic, ci, ['IMPOSSIBLE'], 'J)
is context independent because, regardless of the
context of use, the validation check for reaching
the system internal function panic from the user
interface must always fail. In contrast, the vali-
dation-check specification
funcchccks(copyscg, cd, [source or destination

address is specified by the user],
['IMPOSSIBLE'])

is context dependent because, if the source or
destination address for the kernel internal func-
tion copyscg is specified by a user, then the
validation check must always fail.

Vnliclnlion—check specifications for information
flows: These specifications determine the condi-
tions under which the alteration/viewing of a
variable is allowed, and are usually derived by
interpreting the properties of noncircumven-
tability and consistency of system global vari-
ables. The predicates varchecks specify the vali-
dation checks necessary lo cither alter or view a
global variable through a TCB entry point.

The syntax of the validation-check specifica-
tions for information flows used in the tool is:
- context-independent checks:

varchecks (Variable, alter/view, ci. /checks],

- context-dependent checks:
varchecks {Variable, alter/view, cd. [context],

[checks]) ,
where the Variable denotes a system (TCB)
global variable, the flag alter/view denotes
whether the information flow alters or views the
variable, the flag (ci) cd denotes the context
(independence, the checks denotes a set of vali-
dation-check specifications, and '_' denotes an
empty context definition. For example, the
specification
varchecks (msgque, alter, ci, [invoking process
has write access to msgque], '_')
is context independent because regardless of the
context of occurrence, alteration of a message
queue (or its components,) always requires write
access validation for Ihe current process. In con-
trast, the validation check specification
varchecks(proc—>p_sig, alter, cd. II'RIV'KILL

privilege not present], [current process owns the
process being signaled])
is context dependent, because alteration of the
process signaling variable proc->p_sig requires
that Ihe calling process be the owner of the sig-
naled process, in Ihe context that the calling
process does not possess the privilege
PRIVK1U,.

Note that multiple validation check specifica-
tions may be applicable lo variable or function
flows. Whenever this is true, the conjunction of
the context-independent validation checks and
the disjunction of context-dependent validation
checks are used for Ihe flow.

3.3 Analysis of the integrated execution paths

The analysis phase is a mechanical process of
applying the rules of the penetration analysis
model to detect violations of the penetration-re-
sistance properties. The integrated execution
paths are analyzed according lo the model rules
(using pattern-matching techniques) to detect
the presence of the required validation checks
(derived by interpreting the penetration-resis-
tance specifications.) If a execution path docs
not include these checks, then thai path is
deemed flawed and flagged accordingly.

For example, consider the set of valida-
tion-check specifications:

varchecks(VAR, alter, cd. [PCtxtl], [Fl: CI]).
varchecks(VAR, alter, cd. [PCtxl2], [Fl: C2]).
varchecks(VAR, alter, ci. [F2.C3], 'J).
varchecks(VAR, alter, ci, [F2.C4], '_').
varchecks(VAR, alter, ci, [F2.C5], '_').

where [PCtxt] denotes a context definition and
[I"i:Ci] denotes validation checks represented as
condition statements. Using these specifications,
we can determine thai among the two integrated
altering flow paths PI and P2:

Path I'l Paih VZ
SO Cud I SC: Cndl
SC: V =» II: VI SC: V => II: VI
SC »-» PI SC y-> II
PCtxl2 PCtxtl
Fl: C2 II: C2
PI: VI =» F2: V2 FT: VI =» F2: V2
II i-» 12 Fl i-+ 12
12: C3 F2: C3
F2: C4 12: C4
12: C5 12: C5
F2: V2 a* F2: VAR F2: V2 => F2: VAR

PI is correct while path P2 is flawed, since after
establishing the context by PCtxtl, P2 does not
include the validation checks required in that
context. Note that, in the above example, only
one of the two context-dependent validation
checks apply to each flow path, whereas all the
context-independent checks apply to each path.

Further analysis, which is outside the scope of
our method and tool, is necessary to construct
actual scenarios of penetration that take advan-

169

Kvpte.m (TCH
statement 1

system (TCF1
code

statementN

Figure 1.Automated Penetration Analysis System

tage of the identified flaws. Actual penetration
examples and scenarios are illustrated in detail
in Sections 4.2 and 4.3.

3.4 Virtues and Limitations

A major advantage of our penetration-analysis
method is that it allows the complete, systematic
analysis of a system. It can be used to verify spe-
cific penetration -resistance properties of a sys-
tem's source code, and can he used for automat-
ing the tedious and repetitive aspects of penetra-
tion analysis. For example, Stages 1 and 3 have
been automated (viz., Section 4.1). Stage 2 is
performed manually since it does not typically
involve repetitive activities. The partial automa-
tion of this stage is possible if proper design and
programming disciplines are used (viz., discus-
sion in Section 5.2).

Our penetration-analysis method does not ad-
dress system penetration caused by administra-
tive subversion, by inadequate design or use of
the hardware base, by system failures, or by in-
sertion of miscreant code into tools necessary for
system generation, distribution, or installation.
Instead, it addresses system-penetration patterns
caused by unprivileged users' code interactions
with a system. Thus, the class of penetration
patterns that can be discovered can be character-
ized precisely using this method.

4. AN EXPERIMENTAL TOOL FOR
AUTOMATED PENETRATION ANALY-

SIS AND ITS APPLICATIONS

4.1 Tool Overview

The development of the Automated Penetration
Analysis (APA) tool is based on the penetration
analysis method. Figure 1 illustrates the basic
structure of the APA tool. The ovals represent
system modules while the rectangles represent
data that is either input to or output from the
modules. Most of the modules (all except the
Primitive Flow Generator) have been written in
Prolog. We have used Quintus Prolog 2.1 on an
IBM RT, model 125, running AIX 2.2.1 for our
implementation.

The source code of the system undergoing pene-
tration analysis is the input to the Primitive Flow
Generator (PFG). This module converts each C
source code statement into one or more Prolog
facts called the primitive flow statements. The
primitive flow statements record all unit infor-
mation flows, all unit function flows (call and
return statements), all unit condition state-
ments, and sequencing data so that the unit
flows can he integrated. The Primitive Flow
Generator, which was developed as a part of a
earlier covert storage-channel analysis project
described in [9,10], is written in C, lex and
yacc. It consists of approximately 4,500 lines of

170

code, and produces all Ihc primitive flows for
the Secure Xenix source code in less than 30
minutes with our experimental setup. Further
details may he found in [9, 10].

The Information Flow Integrator (IFI) integrates
the execution paths between a given entry point
(system call or kernel call) at the system inter-
face and a given global variable within the sys-
tem, while the Function Flow Integrator (FFI)
integrates flows between a given system entry
point and a given internal function within the
system. The flow integrators consist of approxi-
mately 3550 lines of Prolog code, and their exe-
cution time is exponential in the size of the input
program. The structural details and optimization
techniques relevant to the integration stage are
described in detail in |8|.

Information and control flow techniques arc
used to integrate the execution paths within the
system source code, and generate integrated flow
paths. These paths show, in a sequential man-
ner, all the pertinent information flows, control
flows between functions, and the choices made
in the conditions encountered along the execu-
tion path.

The Condition Set Consistency I'rovcr (CSCP) is
used to verify that the unit conditions along a
path do not contradict each other. It consists of
about 200 lines of Prolog code. The design de-
tails can lie found in [8|.

The Flaw Detection Module (FI)M) analyzes
the integrated flows or execution paths generated
by the flow integrators. It is based on the Hy-
pothesis of Penetration Patterns, and uses the
rules of the penetration analysis model to delect
penetration flaws in Ihc integrated execution
paths. The set of condition statements required
for penetration resistance is supplied to the sub-
modules in the form of a database of Prolog
specifications derived from an interpretation of
the penetration-resistance properties for the sys-
tem under consideration. The submodulcs then
analyze the integrated flow paths input to the
Flaw Detection Module and compare the actual
checks present with the set of required validation
checks. Whenever a submodulc fails to find a
specified validation check, it flags that path as
containing a penetration related flaw. Thus, it
separates the flawed integrated flow paths from
the coirccl ones.

The Flaw Detection Module has four sub-
modulcs : (i) the Interface Validation Checker -
which checks for incorrect/missing validations
of entry point parameters and privileges, (ii) the
Conditional Information blow Checker - which
detects incorrect/missing validations required for
altering/viewing access to global variables, (iii)
the Conditional Function Flow Checker - which
detects incorrect/missing validation checks re-
quired for invoking critical internal functions,
and (iv) the Timing Consistency Checker -

which looks for timing inconsistencies of condi-
tion checks. (Of course, the number of valida-
tion-check specifications for each system call
depends usually on the call itself; e.g., on the
interface conditions and execution paths shared
with other calls). The verification of the inte-
grated flow paths is illustrated below.

| Integrated Information Flows

Interface Validation Checker
Hawed

^correct
_^— T — •——-^flawed

^-^^^onditional Information FlowChcc.kru^ r

liming Consistency Checker flawed

[Jawed
lows

T Integrated Function Flows

_-. • j ~ . Interlace Validation Checker

^ correct

^Conditional Function Flow Chec

^Timing Consistency Checker
^ correct

cprrec
flows

The user interface of the Automated Penetration
Analysis tool consists of a set of commands that
cither,

a) search for integrated flow paths that lead to a
target information or function flow starting
from a given set of system entry points, or

b) perform penetration analysis on the set of in-
tegrated flow paths found for a given set of
entry points and a given target flow, to flag
the flow paths that possibly contain penetra-
tion-related flaws.

In both cases, the command parameters specify
the set of entry points, the target flow and
whether one or all such integrated flow paths are
to be located.

4.2 An Example of Automated Penetration
Analysis

In this section, we present a simple example to
illustrate Ihc function of the various stages of the
Automated Penetration Analysis tool and to pro-
vide some intuition for the practical use of the
penetration analysis method.

Figure 2 illustrates the simplified source code of
the Secure Xenix system call ustat which has
two user-supplied parameters dev and buf. This
call returns information about a mounted file
system identified by device number dev, and
writes it out to a location pointed at by parame-
ter buf. ustat calls the assembly routine copyseg
to write out to location buf.

171

The kernel internal function copyscg is consid-
ered a critical function because it copies the
contents of one segment to another without
checking for read/write access to the segments
being read/written and without checking
whether the segment selectors refer to user area
or system area. The reason of omitting these
checks is that, by the time Ibis function is exe-
cuted, the user's access to objects have been al-
ready verified, copyseg has three arguments, sre,
dst and cnt specifying the source and destination
segment selectors (for the copy operation) and
the number of bytes to be copied.

When the segment of code for uslal shown in
Figure 2 is input to the Primitive Flow Genera-
tor, the output is a set of primitive flow state-
ments. The set of primitive flows arc then fed to
the Function Flow Integrator (FFI). The FFI in-
tegrates (execution) flow paths leading to a given
function flow. Figure 3 shows a single integrated
flow path including a function flow to copyscg
starling at the us(a(.vyslcm call, first in APA for-
mat and then in block diagram format.

The penetration-resistance specifications rele-
vant to this example are shown in Figure 4, first
in plain Fnglish, then in APA syntax. The Flaw
Detection Module uses the specifications to ana-
lyze the integrated flow path and arrives at the
conclusion that the flow path is flawed since the
parameter checks for buf cannot be matched in
the flow path. Specifically, the flaw appears be-
cause ustat proceeds to write into the location
pointed at by buf, but fails to check that buf
points to a writable location within the invoking
user's address space.

The penetration scenario for exploiting this flaw
is illustrated in Figure 5. As the figure shows, the
user invoking nslat can cause the kernel to write

SYSTEM CAM.
uslat()

register struct mount *mp;
filsysp_t fp;
register struct n {

int dev;
faddrt but;

) *uap;

uap = (struct a *) u.u_ap;
for (mp = mount;

mp < &mount[v. v_mounl];
mp++) (
if (mp->m clcv ~ uap->clcv) {

fp = (fiTsysp_t)bimap(mp->m_bufp);
if(copyscg(&fp->s tfree,uap->buf,
si7.eo[(daddr_t)+sT7.cof(ino_t)) == -1)

u.u error = RI'AULTj
}
return;

u. u error = RIN VAI.;

to any memory location (even outside his own
address space) and can clobber useful informa-
tion there. This example illustrates a violation of
the isolation property because of inadequate pa-
rameter validation and/or absent system/user ad-
dress space separation checks.

4.3 Experiments Using the Automated Pene-
tration Analysis Tool on Secure Xenix Source
Code

Several additional experiments were conducted
using the Automated Penetration Analysis tool

(IT) on the source code Secure Xenix, a Unix ^ type
operating system. A few of them will be de-
scribed here in detail to illustrate the usefulness
of the tool in determining both correct and
flawed implementations of the penetration-re-
sistance properties.

In Figures 6 - 11, we show sections of Secure
Xenix integrated (execution) flow paths in
block-diagram format. For the sake of brevity,
we only include selected path components. The
following conventions are adopted in illustrating
integrated flows: (1) the information flows are
represented by rectangles, (2) the function calls
and returns are represented by ovals, (3) the
conditions checked are represented as diamond
shaped boxes, and (4) the sequencing between

ENTRY POINT:
PalhCond: ustat:

ustat:
ustat:

copyseg ustat ' ' b

mp < mount
(mp->m_dcv==u. u_ap->dcv)
(si7.cof(ino_t))=» copyseg: (cnt)

ustat: (si7.cof(daddr_l))=

(a)

ustat:
ustat:
ustat

(u. u_ap->buf)
(&fp->s_tfree)
i—• copyscg

» copyseg: (cnt)
copyscg: (dst)
copyscg: (six)

I'CR entry
point USTAT(dev. but)

Figure 2. C-language code of a fictitious
uslatC) system call

Figure 3. Integrated Function Flow path
to the copyseg() internal function
(a) APA format (b) block diagram

172

parchccks(ustat,
[mounl table entry corresponding to

dev exists]
ci.

parchccks(ustat,
[buf is in u ser space and is writable].

funrchccks(copyseg
cd,
I source a
[•IMPOS5

address is supplied by user],
OSSIBLE']).

funcchccks(copyscg,
cd.

(a)
[destination address is supplied by user],
['IMPOSSIBLE]).

parchecks(ustat,
[,->,m_d cv,==,u,'. ' ,u ap.->,dcv]
ci,

(ts(ustat,
[copyout,'(',_,',' ,u,'. ' ,u ap,->,buf,',',
ci,

parchecks(ustat,

funcchecks(copyscg,
ccl,
[_, fu,'.' ,u ap,->, I ,_,==>, copy seg.src.O]
['IMPOSSIBLE']).

funcchccks(copyscg,
cd,

t.v [_• (u> •' .u_aP-_>._l • _.">, COpyseg.dsl.O]
(b) [1MPOSSIISI.E]).

Figure 4. Penetration Resistance
Specifications for example

(a) English (b) A PA syntax

TCB BOUNDARY

KERNEL Reference Monitor *
Mechanism (FIMM| V Bur

ACCESS CONTROL POLICY \ •
°*!°S! cop

copyseq

copyseq^ , copyseg

superblock of mounted
astern si
by DE<

file system specified

KEY
GBS Unprivileged Entry Point
I I Privileged Entry Point
•I Faulty Entry Point
__j^^ Execution path
, >~-^. Invocation of TCB prlmltlvf
 ^^ Information flow

Figure 5. Penetration Scenario for Fig. 3

flows, calls, and condition checks are repre-
sented by arrows.
4.3.1 Experiments on Kernel Code

Experiment 1. Path to the panic function: This
experiment illustrates a case of TCB penetration
without Reference Monitor Mechanism penetra-
tion, which is caused by an undesirable sys-

NAP(period)

Figure 6(a). Path to the panic()
 function

TCB BOUNDARY

0

1 —:—

n-1

RMM

callout table

KEY
Unprivileged Entry Point

I I Privileged Entry Point
IB Faulty Entry Point
__^^ Execution path
, <~-^» Invocation of TCB prlmltlv*
 ^^ Information flow Figure 6(b).

Penetration Scenario for Figure 6(a)

<R> UNIX is a registered trademark of the Unix Systems
Laboratory, inc.

In Figures 6-11, IPs stands for Trusted Processes
and RMM for the Reference Monitor Mechanism.

173

tern/user dependency. We (raced the palhs from
all the system entry points (system calls) to the
Secure Xenix internal function panic, which
causes the system to crash. The experiment re-
vealed that out of the 110 system calls in the sys-
tem we analyzed, 38 of the system calls could
lead an unprivileged user to the panic function.
In fact, there are 15 independent paths to the
panic function that could be traced from the user
interface.

In Figures 6(a) and (b), we show one such path
to the panic function and the resulting scenario
of penetration. This path starts at the nap system
call which suspends the calling process from
execution for at least the number of milliseconds
specified by parameter period. The parameter
period is first checked to be within the maximum
allowable range and the number of clock ticks
corresponding to the value of period is also
checked to be greater than zero. Next, the func-
tion timeout is invoked to insert an appropriate
entry into the global callout table. The callout
table is a list of entries each specifying that a cer-
tain function is to be called after a certain num-
ber of clock ticks. The kernel sorts entries in the
callout table based on the number of ticks for
that entry. The function timeout searches the
callout table for the index of the correct inser-
tion point for the new entry; if this index is be-
yond the table limits (i.e., the callout table
would overflow if the new entry is inserted),
then the system crashes by invoking the panic
function. This is unsatisfactory, because a user
could deliberately fork a large number of proc-
esses each of which invokes system call nap,
thus causing the system to crash and resulting in
denial-of-service to other users.

The scenario in Figure 6(b) typifies an undesir-
able system/user dependence which should not
be allowed to exist within a penetration-resistant
system. It must be noted thai the callout table is
a global variable and is not a system defined ob-
ject. Hence, access to the callout table is not
monitored or controlled by the Reference Moni-
tor Mechanism. In fact, there is no evidence of
a breach of the Reference Monitor require-
ments, yet we have a scenario of TCH penetra-
tion.

Experiment 2. Paths l<> the internal function
copyseg: This experiment illustrates violations of
the properties of isolation and noncircumven-
tabilily through flow paths that lead to invoca-
tion of the critical internal function copyseg. In
this experiment, we traced all the integrated flow
paths that lead to the copyseg routine starting
from the user interface. As mentioned in the last
section, in all but two cases, copyseg was called
to copy from/to segment selectors specified by
the kernel. In the other two instances, namely
through system calls ustat and shutdn, copyseg
was called with user specified segment selectors.

One such integrated execution path through the
ustat system call and the resultant penetration
scenario was illustrated in the last section in Fig-
ures 3 and 5. Here, we will illustrate (in Figures
7(a) and (b)), a single integrated execution path
through the system call shutdn and the penetra-
tion scenario caused by it.

System call shutdn is part of the security operator
function, and is used to hall the CPU. Before
halting, it updates the information on disk based
on the information in core memory and sends
out appropriate messages to the console.lt has a
single argument addr. If addr is nonzero, it
specifies the address of a superblock that is writ-
ten to the root device before the CPU is halted.
This feature facilitates filcsystcm repair when
the root superblock is corrupted and has to be
replaced. Shutdn can be called only by a user
possessing the privilege SHUTDN, which is pos-
sessed by the security operator role.

As seen in Figure 7(a), the SHUTDN privilege is
first checked and then a function flow to inter-
nal function shutdown occurs. Next, the user pa-
rameter addr is checked to be nonzero before
the function copyseg is called to write from the
address specified by addr to the root superblock.

A problem of role separation arises here, be-
cause addr is an address specified by the user,
and the execution path reveals that addr is not
checked (to point to a readable location within
the user's address space) before a copyseg opera-
tion writes the contents to the root superblock.
Thus, as shown in Figure 7(b), addr can point to
any system area (including objects belonging to
other system administrators) and the contents of
addr are written to the root superblock which
happens to be universally readable. This is a di-
rect breach of role separation [13], and repre-
sents a TCB penetration scenario which is
caused by inadequate implementation of the
Reference Monitor Mechanism.

Experiment 3. Alteration of (lie global message
queue table : This experiment reveals a viola-
tion of the properly of timing consistency of
condition checks. In system call msgsnd, the op-
erations of access authorization and actual ac-
cess are not done in an atomic sequence result-
ing in a potential timing inconsistency.

In a Unix-type system, a message queue
(msgquc) is a mailbox where the order of mes-
sage arrival is maintained and senders and re-
ceivers are processes. The global msgque table
has entries that describe all the message queues
currently in existence in the system.

In Figures 8(a) and (b), we illustrate an inte-
grated flow path originating at the msgsnd system
call and leading to an alteration of the message
queue table, and the resulting scenario of pene-
tration. This system call is used to send a mes-
sage to a queue identified by parameter msqid.
Parameter msgp points to a data structure con-

174

mining Ilic message type and the message text;
m.sgsz specifics Ihe size of the message text in
bytes; msgPg specifies the action to be taken
when certain error conditions occur.

The system checks that msqid points to a valid
message queue and that Ihe calling process has
write access to that message queue. Memory lo-
cation msgp (which has to be read from) is then
validated to lie within user space readable by the

TCB entry
point SHUTDN(addr)

function call to COPYSEC
(write from source sxc x^ to destination _ost

Figure 7(a). Integrated Function Flow
path to the copyseg() internal function

TCB BOUNDARY

RMM

security
administrator

object

root file
system
superblock

KEY
S3 Unprivileged Entry Point
I 1 Prlvlleqed Entry Point
HI Faulty Entry Point
___^^ Execution path
, r-~~^ Invocation of TCB primitive
_ _ ^^. Information flow

Figure 7(b). Penetration Scenario for
Figure 7(a)

calling process. The system then checks for
availability of the three types of resources neces-
sary to add the new message to the message
queue, namely, i) there is enough space on the
message queue to add the new message, ii) there
is a free message header available, and iii) there
is enough physical space in the message map to
hold the entire message text. If any one of these
resources is not currently available, the system
goes to sleep waiting for the resource to become
available and once it returns from sleep the sys-
tem checks to see if the message queue still exists

TCI3 entr
point MSGSND(maqlri mftpp mRQR7 msflflg)

exit from MSGSND
qp = msgque pointed at by

msqid =^> qp
m*qid

exit from MSGSND

exit from MSGSND

exit from MSGSND

increase the size of qp by msiisz bytes

msasz =5> qp->msg_cbxisS

Figure 8(a). Flow path with timing error

175

before going on. In fact, only when all Ihe re-
sources become available and the message queue
is checked to still be in existence, will the mes-
sage actually be put on the queue. Al that lime,
the size field of the message queue (global vari-
able msgque -> msg chyfes) will be altered along
with several other fields.

The validation check for the write access to Ihe
message queue is performed early in the execu-
tion path. This check is required, however, for
the altering flow to the global variable msgque->
msg_cbytes. Since the process can go to sleep
several times between the access check and the
actual information flow, the effect of this valida-
tion check is not assured at the lime the flow
occurs. Thus, this integrated flow path violates
the property of liming consistency of validation
checks. It is possible that al the time of message
queue alteration, the access rights of the message
queue have been changed (by another user proc-
ess invoking the msgcll system call) while the
calling process slept, and the calling process no
longer has write access to it.

This experiment shows a scenario where the
timing consistency of a validation check is not
properly enforced by the Reference Monitor
Mechanism, leading to a scenario of Reference
Monitor as well as TCB penetration.

4.3.2 Experiments on Trusted Process code

Experiment 4. Timing Inconsistency in trusted
process mkdir: In this experiment, we illustrate
a scenario where a potential timing inconsis-
tency exists within a trusted process. In
Unix-based systems, the kernel maintains con-

msgsnd (MSQID. MSGP,
MSGSZ. "'

KERNEL

KEY
88 Unprivileged Entry Point
I I Privileged Entry Point

Bi Faulty Entry Point
__»^ Execution path
, f^~, Invocation of TCB primitive
 ^^ Information flow

message
gueue

FNAME

Figure 8(b). Penetration Scenario for
Figure 8(a)

sistency mainly through a discipline of
non-preemption. Trusted processes, however,
do not enjoy the luxury of non-preemption and
hence need other methods such as locks and ig-
noring signals to maintain timing consistency of
the condition checks.

In Figures 9(a) and (b), we illustrate the inte-
grated flow path that causes timing inconsistency
in trusted process mkdir and the penetration sce-
nario that results from it. The trusted process
mkdir is used to create directories in the filesys-
tem hierarchy. One or more directories may be
created depending on the number of arguments
supplied. There is a -5 (security) option which
allows the invoker to create directories with a
specified higher security level, not lower than
the level of the parent directory and not higher
than the file system maximum security level.
System call setflbl allows a privileged user to set
the level of a file to any arbitrary value.

In this integrated flow path, the trusted process
mkdir is invoked with one directory argument
[name and the —s option with option argument
level. That is, mkdir is requested to create a di-
rectory named /name with security level level.
As shown in the Figure 9(a), the length of the
string given by argument fname is checked to be
shorter than the maximum allowable length for a
directory. Then, write access to the parent di-
rectory (of fname) is checked for the calling
process. Next, if the -s flag is specified, and if
the calling process docs not possess the
MAC_EXEMPT privilege, security level level is
validated to be equal to the security level of the
parent and no higher than the filesystem maxi-
mum level. These compatibility checks ensure
that the security level hierarchy in the filesystem
(where, the security level of a parent is no
higher than the child, and the filesystem maxi-
mum level is no lower than the level of the files
within it) is maintained. Then after a number of
other operations - that actually create the new
directory fname and initialize it - system call
setflbl is invoked to set Ihe security level of the
new directory to level.

Since, trusted processes ate preemptible, it is
obvious that in the integrated execution path
shown in Figure 9(a), the mkdir process can be
preempted between the security level compati-
bility check and the call to setflbl. It is quite pos-
sible that another process takes control of the
CPU within this time interval and raises the se-
curity level of the parent directory so as to make
it higher than level. However, when mkdir re-
gains the processor, it calls setflbl in privileged
mode and sets the level of fname to level, which
is now higher than the level of the parent direc-
tory, thus directly violating the access-control
policy of the system. To maintain timing consis-
tency, mkdir should have placed a write-lock on
parent while performing the compatibility check
and then calling setflbl to set the label of fname.

176

TCB entry
poini

UMDIK -s JCMCJ tuanifi

rxit Troni
trusted process

parent = parent directory of file Game
lunnie =5> patent

exit from
I rusted proce

exit from
trusted process

exit tiom
tuisled proce

exit from
trusted pioce

r
exil from

trusted proce hustcd process
niny be preempted
from CPU during
(his lime period

function cnll to SP.TR.HI.
set security level of file to Llbd

Figure 9(a). Integrated Flow Path to (he
privileged system call setflbK)

The timing inconsistencies of this experiment
causes a violation of access control policy of the
TCB without violating the requirements of the
Reference Monitor Mechanism. This is the case
because the timing inconsistency occurs in a
trusted processes access which, in fact, legiti-
mately circumvents the Reference Monitor vali-
dation checks.

Experiment 5. Timing Inconsistency in Trusted
Process rmdir: This experiment reveals another
timing inconsistency in a trusted process that
leads lo a penetration flaw. Here we have a TCB
penetration without a penetration of the RMM,
for the same reason as that with Experiment 4;
i.e., the trusted process causing the liming in-
consistency legitimately circumvents the Refer-
ence Monitor validation checks.

In Figures 10(a) and (b), we illustrate a flawed
function-flow path within the trusted process
rnulir. The trusted process rmdir is used to re-
move one or more directories specified as user
parameters. In the figure, rmdir is given a single
parameter /name (or parent/child) specifying
the directory that is to be removed. The trusted
process checks whether the supplied filename
exists and is a directory not identical to the cur-

c chlabel HIGH/ALL. PARENT

mkdlr - 8
LOW/NONE PARENT/CHILD

getflblf PARENT, BUF)

setflbl (CHILD. Lpw/NONE)

9etflbl(PARENT,\ HIGH/ALL)

RMM

PARENT dlr

CHILD dlr

KEY

EB Unprivileged Entry Point
| I Privileged Entry Point

Hi Faulty Entry Point

Execution path

Invocation of TCB primitive

Information flow

Figure 9(b).
Penetration
Scenario for
Figure 9(a)

rent directory. It then checks for read access to
fname, and reads the file to check if it is a empty
directory. If so, write access to the parent direc-
tory of fname, parent, is checked. If present,
fname is removed from the filcsystem by unlink-
ing it from its parent .

The integrated execution path shown in the Fig-
ure 10(a) leads from the rmdir trusted process
interface to a function call (or function flow) to
the unlink system call, unlink writes into a direc-
tory and, hence, it checks the write access for all
non-privileged processes invoking it. However,
rmdir is a privileged process with the MACEX-
EMPI" and DAC_FXEMIT privileges, hence,
the access check modules inside the kernel are
bypassed by unlink in this situation. Thus, when
unlink is invoked in a privileged mode, it re-
quires that a write access check be performed in
an atomic sequence with the invocation of unlink
to maintain timing consistency of the access
check. Since, trusted processes are preemptible,
it is obvious that in the integrated execution path
shown in Figure 10(a), the rmdir process can be
preempted between the access check and the
call to unlink. It is quite possible that another
process takes control of the CPU within this time
interval and changes the access permissions on
parent. However, when rmdir regains the proc-
essor, it calls unlink in privileged mode and
writes into a directory to which it may no longer

177

TCB entry
pom I RMD1R fnnme

parent = parent directory of file fname
[name c==^> parent

cxil from
trusted process } trusted process

may hejprcempted
from CrlJ durinR
this time period

function call to UNUNK
\i n 1 i n k f na ine fro m pa re n t

Figure 10(a). Integrated Flow Path to the
system call unlink in privileged mode

rmdlrPARENT/CHILD

TCB BOUNDARY

chmod(PARENT. 0555)

PARENT dlr CHILD dlr

Figure 10(b).

KEY
Unprivileged Entry Point

I I Privileged Entry Point

Hi Faulty Entry Point
 ^p. Execution path
, ^~^» Invocation of TCB primitive
 ^^ Information flow

have write access. To maintain timing consis-
tency, rmdir should have placed a write-lock on
parent while checking for write access and then
calling unlink to write into parent.

Experiment 6. User Parameter Validation Er-
ror in Trusted Process rmdir: This experiment
revealed a penetration scenario caused by inade-
quate parameter checking at a trusted process in-
terface. In the Figures 11(a) and (b), rmdir is
also given a single parameter /name which
points to a string that specifies the name of the
directory that is to be removed. The first action
of the trusted process is to copy the string refer-
enced by /name into a fixed length local buffer
buf allocated on the user slack. This is done by
invoking the subroutine strcpy, which copies one
string to another without checking if the length
of the second string is large enough to accommo-
date the first string. The subroutine strcpy pre-
supposes that adequate length checking of the ar-
guments to strcpy was done.

This experiment illustrates a case of inadequate
parameter validation by a trusted process, since

Ten entry
point RMDIR fn.lnic

±
rlslsli =

buf =^>
local huffer buf

fUlsIr

t
strstr =

fnanif •^
fn«inr

srcslr

function call to STRCPY Copy from srr.st r (o i,]Lstfitr

Figure 11(a). Integrated Flow Path to the
 subroutine strcpy ()

TCB
BOUNDARY

KEY
E59 Unprivileged Entry Point
I I Privileged Entry Point

^B Faulty Entry Point
Execution path
Invocation of TCB primitive
Information flow

Penetration Scenario for Figure 10(a)

Figure 11(b).
Penetration Scenario for Figure 11 (a)

178

a user specified parameter was not checked to be
wilhin the range of length allowed by the system,
before being copied into a fixed length buffer on
the process slack. The result is that buf may be
overflowed and a false frame is created on the
trusted process slack. This false frame can spec-
ify any arbitrary address as the return address of
a function call. Since rmdir has special privi-
leges, the penelrator can cause any code to be
executed with the special privileges of rmdir.

Note that the validation of the string length
could not have been performed by the Reference
Monitor code since thai validation if
trusted-process-call dependent; i.e., only the
trusted process knows the maximum size of the
buffer, buf, meant to receive the user-specified
string. I'hus, only the TCB, and not the Refer-
ence Monitor Mechanism could eliminate this
penetration flaw.

5. USING THE PENETRATION
ANALYSIS METHOD - GENERAL OB

SERVATIONS

5.1. Scope of Penetration Analysis

The boundary of a system that is subject to pene-
tration analysis can be viewed as the boundary of
a Trusted Computing Base (TCB) defined to
contain the "security relevant portions of a sys-
tem " [12|. Thus, in addition to the access-con-
trol policy modules, which are encapsulated by
the Reference Monitor Mechanism, the TCB
usually contains other security relevant modules,
such as those for audit, identification and
authentication, and truslcd path.

The concept of a reference monitor was intro-
duced in the Anderson report [1] to be an ele-
ment of a secure system "which enforces the
authorized access relationships between the sub-
jects and objects of the system." The Reference
Monitor Mechanism (RMM) is required to be
(i) lamperproof, (ii) always invoked, and (iii)
small enough lo be verifiable [1,12]. Since the
RMM only refers to the access control policy,
and its vcrifiabilily is only with respect to the in-
variants of lhat policy, the RMM can be viewed
as being a strict subset of the TCB. The RMM
lamperprooofncss and n on circumvent ability
provide assurance regarding the integrity of the
RMM and, implicitly, of the RMM implementa-
tion of the access-control policy.

It has been commonly believed that if the RMM
tamperproofness and noncircumvenlability re-
quirements are supported in a TCB, then the
penetration-resistance of the entire TCB can be
asserted. However, the experiments presented in
Section 4 show that penetration resistance of a
TCB cannot be guaranteed by these RMM re-
quirements alone, even if we assume thai other
system policies and mechanisms (e.g., identifi-

cation and authentication, audit) are penetra-
tion resistant(*). This is the case for, at least,
the following three reasons:

- TCB penetration may be caused (1) by
references which alter internal variables lhat are
not part of any object, or (2) by users' invoca-
tions of the TCB that cause a critical internal
TCB function to be invoked (viz., Experiments
1 and 2). Therefore, the RMM cannot mediate
these accesses since, by definition, it can only
mediate subjects' access to the defined objects;

- TCB penetration may be caused by flawed
implementation of the penetration-resistance
properties in trusted processes lhat may, other-
wise, legitimately bypass the RMM (viz., Ex-
periments 4 and 5). In such cases, the RMM is,
by definition, unable to mediate these accesses;

- TCB penetration may be caused by inade-
quate context-dependent checking of parame-
ters by trusted processes (viz., Experiment 6).
In such cases, the RMM is unable to enforce
TCB isolation properties, by definition, since it
cannot be expected lo understand context de-
pendencies of trusted processes.

Experience with our penetration analysis
method shows that the set of penetration-resis-
tance properties for a TCB arc a strict superset of
the RMM requirements, and these properties
have to be observed to ensure the security of
TCB and entire system. Furthermore, the tam-
perproofness and noncircumvenlability proper-
ties of a system (e.g., TCB) are a strict superset
of Ihe RMM requirements, in the sense that they
apply to the whole TCB as opposed lo only the
RMM. Thus, a penetration scenario caused by a
violation of (1) consistency of global system
variables, (2) timing consistency of validation
checks, and (3) undesirable system/user de-
pendencies, may illustrate TCB penetration
without RMM penetration.

5.2 Validation-Check Dependencies on De-
sign and Programming Disciplines

The validation checks that should be included in
a system's source code (and specified for use by
the Elaw Detection Module) depend on both Ihe
design and programming disciplines used in sys-
tem development. Design-level validation de-
pendencies are common to most operating sys-
tems, whereas programming-level dependencies
are specific to the actual disciplines used. Identi-
fying both of these types of dependencies is im-
portant for Ihe correct (automated or manual)
generation of validation-check specifications for
use by the Elaw Detection Module. Without the
benefit of a correct set of validation-check
specifications, the penetration analysis process
loses precision.

(*) It should be obvious lhat one could penetrate the
identification and authentication mechanism without
penetrating the RMM.; e.g., via password attacks.

179

Validation checks for penetration resistance are
of two major types: interface validations involv-
ing parameters and privileges at the TCB inter-
face, and functional (correctness) validations
required elsewhere within the system. Typically,
the isolation property dictates the validations re-
quired at the interface, whereas the other prop-
erties determine the validations required else-
where.

5.2.1 Examples of Design-level Dependencies

The penetration analysis experiments reveal sev-
eral types of design-level dependencies of vali-
dation-checks. Combinations of such dependen-
cies may arise in specifying validation checks for
individual system calls.

Cali-Dcpendcncics of Validation Checks: Vali-
dation checks (or condition check statements)
required by penetration-resistance are some-
times dependent on the particular system call in
which they occur. For example, in Unix, the
global variable 'mode may be altered via both the
mknod and write system calls. Due to the differ-
ence in the semantics of the two system calls,
however, write alters an inode that already ex-
ists, whereas mknod alters an inode it has just
created on behalf of the user invoking the system
call. Thus, the validation-check specification
for the altering flow through write must state that
a validation of the write access to the inode is
required (based on some policy (*)) . In con-
trast, the validation-check specification for the
altering flow through mknod will not include this
write access check. Validation checks that de-
pend on the system call in which they occur are
named "call dependent." It should be obvious
that all interface validations are call dependent,
since the very definition of the parameters and
privileges are implicit within the system call in
which they occur. However, functional valida-
tions may or may not be call dependent.

Type—Dependencies Validation Checks: Valida-
tion checks may also be dependent on the type
of object the system (e.g., kernel) is working on
or on the type of command/argument specified
at the user interface. For example, within the
Secure Xenix system call semctl, user parameter
arg specifies a pointer to a buffer to be either
read or written depending on the value of the
parameter cmd. If cmd is equal to IPC_SET, the
system call reads from the buffer, and hence a
validation check for reading from the buffer is
required (based on some policy (*)); whereas if
cmd is equal to IPC_STAT, the system call
writes to the buffer, and hence a validation
check for writing to the buffer is required (based
on some policy (*)). Thus, depending on the
type of the parameter cmd, the parameter arg is

* Note that the policy under which the access is deemed
valid is irrelevant to whether the validation is performed.

validation check*

call , type
dependent depeftclent

addr space
separation

validation
Validations of

parameters
by value

depende
/I \

/ I \
semantic
classes

type
independent

. semantic
classes

Figure 12. Examples; of Validation-Check
Dependencies

validated in different ways and, thus, different
validation specifications must be provided. Simi-
larly, in the system call aclquery of Secure
Xenix, which queries the access control list of
an object, the validation checks are different for
different object types specified via the user inter-
face. This kind of dependence of a validation
check is termed "type dependence."

Since "call dependence" and "type depend-
ence" are both related to the context in which
the user is requesting service from the kernel, we
will group them together as context dependence.
In general, validation-check specifications may
be either "context dependent" or "context in-
dependent" (see Figure 12). The "context" of
those specifications is provided by an execution
path, which is determined by the kernel entry
point and the entry point parameters.

Dependencies or Interface Validations: The
validations required at the user interface in-
clude, (i) parameter validations, (ii) privilege
validations and (iii) user/kernel address space
separation checks. System call parameters can
be passed either by value or by reference. The
latter type of parameters have to be read into
system space to convert them to parameters by
value. During the reading in of these parameters,
the system should check for (segment) read ac-
cess as well as whether it is reading from the ad-
dress space of the invoker, as illustrated in Fig-
ure 12. Parameters passed by value can be fur-
ther classified as either "type independent" or
"type dependent" (e.g., parameter arg in semctl
), or as requiring no validation whatsoever (e.g.,

180

when a parameter specifics a numerical value
that has no legality bounds associated with it).

Semantic Dependencies or Parameter Classes:
During the analysis of the parameter validation
for the Secure Xenix kernel, we have found that
it is possible to classify the system call parame-
ters based on call semantics, and that, in the
majority of cases, parameters belonging to the
same semantic class are validated in an almost
identical way. Such classification simplifies the
process of generation of the set of parameter
validations that need to be performed at the user
interface. For example, in Secure Xenix, there
are a large number of system call parameters that
specify a filename in the form of a character
siring. Every single such filename parameter is
validated in exactly the same way (through the
internal function namei) to ensure that the string
indeed represents a valid filename in the system
and that the calling process has search access to
all the directories in the pathname. Similarly
there arc other obvious semantic classes such as
read and write buffers, file descriptors, message
or semaphore identifiers.

Theoretically, every single system call parameter
can be placed in a semantic class and the inter-
face validations required for each such class can
be clearly specified. When a complete set of se-
mantic classes is obtained, the automated analy-
sis of system call parameter validation becomes
possible for a given system by making the specifi-
cations of the required validation checks avail-
able to the Automated Penetration Analysis
tool.

Semantic classes with a large number of mem-
bers are especially suitable for automated analy-
sis. However, some of the semantic classes will
have a single member, and hence, in those
cases, automated analysis will involve as much
effort as manual analysis of the source code.
System call parameters that are type independent
can usually be placed in large-sized semantic
classes. In contrast, type dependent parameters
are the ones that are the most difficult to classify
and usually belong to single member semantic
classes.

5.2.2 Examples of Programming Discipline
Dependencies for Trusted Processes

Explicit Object Sharing Among Trusted Proc-
esses: Trusted processes of Secure Xenix, and
those of most Unix systems, rarely interact with
each other except inside the kernel via system
calls. Shared global variables between trusted
processes exist in a few cases but, in general,
trusted processes share no global variables, ex-
cept in the form of shared (system) objects such
as files, pipes, and these objects are shared
through system calls. Since the kernel is ana-
lyzed for penetration-resistance separately,

trusted processes that share no global program
variables can be analyzed as separate entities.
However, trusted processes that do share global
program variables amongst themselves, (such as
the "lp" subsystem commands,) must be ana-
lyzed collectively as a subsystem. Their relation-
ships with respect to the shared objects must be
explicitly defined such that the required valida-
tion checks can be specified.

Explicit Parameter Passing to Trusted Proc-
esses.
Parameter Passing: Unlike the user specified pa-
rameters of kernel calls, the user-specified pa-
rameters of trusted processes are not as easily
identified syntactically in the code. This is be-
cause a single variable might specify a string of
parameters passed by reference. When these pa-
rameters are validated, the validation condition
statements refer repeatedly to the same string
identifier (the pointer to the string identifier is
advanced successively to refer to the successive
parameters referred by the string). Thus, it be-
comes very difficult to uniquely identify the in-
dividual user parameters, and hence to derive
the syntactic form of the penetration-resistance
specifications, whenever parameter passing is
not explicit.
Interactive Input: Many user parameters to
trusted processes are input interactively from the
user interface and are copied into local variables
of trusted processes before validation. The iden-
tification of which local variables receive
user-specified values via interactive input should
be explicit. Otherwise, deriving the penetra-
tion-resistance specifications becomes as diffi-
cult as analyzing the source code manually and is
hence not cost effective.

Explicit Specification of Trusted Process Pro-
tection Mechanisms: The majority of the pro-
tection mechanisms used by the trusted proc-
esses depend on properties possessed by the exe-
cutable modules of trusted processes and are not
always apparent by an analysis of the code. Such
mechanisms include setuid/sctgid mechanisms,
special users and groups (representing adminis-
trative roles) with discretionary access to special
administrative files and data structures, and spe-
cial privileges which are endowed directly (and
not explicitly acquired). The use of such mecha-
nisms in trusted processes should be made ex-
plicit. Otherwise, a potentially large number of
extra facts must be manually fed into the Flaw
Detection Module thereby reducing the degree
of automation possible.

Whenever trusted processes are relatively small
(in terms of lines of source code) it may be eas-
ier to perform the flaw detection manually by as-
suming that the trusted process is endowed with
power which is not obvious through code inspec-
tion. In such cases, automated analysis of
trusted processes may not always be cost effec-
tive. In these cases, trusted processes can be

181

analyzed manually using the model and the
penetration-resistance properties as guidelines.

5.3 Interpreting the Penetration-Resistance
Properties

To generate penetration-resistance (i.e., valida-
tion-check) specifications at the source-code
level of a system, we must interpret the abstract
penetration-resistance properties discussed in
Section 2 above in source code. In conducting
the experiments presented in Section 4.3, we
found that, instead of trying to interpret the ab-
stract properties in the source code directly in a
single step, it is easier to first interpret these
properties using internal design-level specifica-
tions. This additional step enabled us to generate
a set of design-level (concrete) properties from
the abstract properties, through a study of the
system documentation, and then to interpret
these concrete properties in the source code.
These design-level, penetration-resistance
properties can then be used to derive the set of
validation-check specifications for verifying that
the actual source-code level checks for al-
ter/view/invoke accesses arc correctly performed
within the system.

The process of interpreting abstract penetra-
tion-resistance properties in design-level speci-
fications and then in source code is analogous to
that of performing model interpretation in a sys-
tems' descriptive/formal top-level specifications
(DTLS/FTLS) and source-to-code correspon-
dence. However, the DTLS/FrLS differ from
the design specifications needed for interpreting
penetration resistance properties. In general, the
DTLS/FrLS are intended to define the system
behavior in terms of user-level objects (e.g.,
processes, files, directories) and, therefore, do
not include specifications of internal system be-
havior. Thus, DTLS/FrLS are usually not de-
tailed enough to reveal the flaws that cause sys-
tem penetrability. For example, no amount of
analysis at the DTLS/FTLS level documentation
would have revealed the timing consistency flaw
illustrated in Experiment 3, or the use of copyseg
to copy to/from a user supplied address illus-
trated in Experiment 2. Instead of DTLS/FTLS,
internal system specifications should be used to
derive the concrete properties of penetration-re-
sistance from the abstract properties.

The penetration analysis of a given system can
be done in either of two ways. We can start from
the abstract properties to generate the concrete
properties, which in turn may be used to gener-
ate the set of required source code level checks.
This is the approach we have adopted in our
Automated Penetration Analysis tool implemen-
tation, where our method ensures that the re-
quired checks are indeed present in the inte-
grated flow paths. Alternately, the set of inte-
grated flow paths could be used to determine

whether validation checks in source code satisfy
the abstract properties. This approach would be
advisable when we attempt to formally verify the
penetration-resistance properties of a kernel
(see Figure 13).

6. DISCUSSION

The experimental Automated Penetration
Analysis tool based on the penetration-analysis
method proposed in this paper has been used in
several experiments on the Secure Xenix source
code, a few of which have been reported here.
The tool may be used to detect violations of ad-
ditional penetration resistance properties. It may
also be used for other Unix systems implement-
ing the same set of properties. Furthermore, by
merging new flows with old flows, and new
checks with old checks of the same system (e.g.,
TCB), the tool can be used for incremental
analysis (of penetration resistance) of updates.
Lastly, it can be used for penetration analysis in
other applications; e.g., database management
systems.

Our observations regarding the separability of the
policy concerns from those of penetration resis-
tance, and the insufficiency of the reference
monitor mechanism in providing assurance re-
garding penetration resistance of a system, helps
delimit the usefulness of the Reference Monitor
properties in penetration analysis. Designs of se-
cure systems can also benefit from the observa-
tion that the design and programming disciplines
of a system have a large impact on the ease (or
difficulty) of performing (automated) penetra-
tion analysis. Finally, the observation that the
assurance process for penetration resistance is
similar to that for policy implementations will
allow the use of well-accepted assurance tech-
niques for the purpose of penetration analysis.

We believe that our research is a first step in sys-
tematic penetration analysis. However, there re-
mains much work to be done in this area. More
research is required to enrich and augment the
set of penetration-resistance properties docu-
mented in this paper and in [7J. Further work
can also be targeted towards developing tech-
niques for (partially) automating the derivation
of penetration-resistance specifications for a

abstract penetration
resistance properties

interpretation
(specification

derivation)
design-level specification of
pe nc t ra t ion- resist a nee

properties

correctness

source-code level specification of
penetration-resistance
 properties

Figure 13. Derivation of Penetration
Resistance Specifications

182

given type of system. This suggests the need for a
more intuitive syntax for the "context" and
"check" portions of these specifications. The
current version of the Automated Penetration
Analysis tool can also benefit from further opti-
mization to improve its execution speed, and the
development of new Primitive Flow Generators
for other languages for analysis of system source
code written in languages other than C.

ACKNOWLEDGMENTS

actions on Software Engineering, Vol.
SE-13, No. 2, February 1987, pp. 208-22F

Gupta, S. and V. D. Gligor, "Towards a
Theory of Penetration-Resistant Systems
and its Applications," Proc. of the 4th IEEE
Workshop on Computer Security Founda-
tions, Franconia, Nil, June 1991, pp.
62-78 (to appear in the Journal of Computer
Security, 1992).

Experiment 1 was suggested by the observation
that some scenarios of exploiting covert storage
channels may, in fact, lead to penetration [15].
Experiment 5 was suggested by Robert II. Mor-
ris. Experiment 6 was inspired by Robert T.
Morris' experiment with the internet fingerd
[4J.

This work was supported by the IBM Corpora-
tion, Federal Systems Company, in
Gaithersburg, Maryland under contract number
319429 at the University of Maryland. We are
grateful to Tom Tamburo, Wen-Dcr Jiang,
Marty Simmons, Curt Symcs, and Tom Russell
for their support and encouragement.

REFERENCES

[1] Anderson, .1. P., "Computer Security Tech-
nology Planning Study, Volume2," NTIS:
AD-772 806, NTIS, October, 1972.

[2] Bach, Maurice .1., The Design of the UNIX
Operating System, Prentice-Hall, Inc.,
Fnglcwood Cliffs, N.J., 1986.

13] Bisbcy, R., G. Popek and J. Carlstedt,
"Protection Errors in Operating Systems:
Inconsistencies of a Single Data Value Over
Time," USC / Information Sciences Insti-
tute, ISI / SR-75-4, December 1975.

[41 Eichin, M.W., and J.A. Rochlis, "With Mi-
croscope and Tweezers: An Analysis of the
Internet Virus of November 1988," Proc. of
the 1989 IEEE Symposium on Research in
Security and Privacy, Oakland, California,
May 1989, pp. 326-344.

[8] Gupta, S. and V. D. Gligor, " Experience
with a Penetration Analysis Method and
Tool," Computer Science Technical Report
No. 2881, University of Maryland, College
Park, April, 1992.

[9] He, Jingsha and V. D. Gligor, "Information
Plow Analysis for Covert-Channel Identifi-
cation in Multilevel Secure Operating Sys-
tems," Proc. of the 3rd IEEE Workshop on
Computer Security Foundations, Franconia,
Nil, June 1990, pp. 139-48.

[10] He, Jingsha, An Automated System for Cov-
ert-Channel Analysis in Multilevel Secure
Operating Systems," Ph.D. Dissertation, De-
partment of Electrical Engineering, Univer-
sity of Maryland, August 1990.

[11] Finde, R. R., "Operating Systems Penetra-
tion," Proceedings of the National Computer
Conference, vol. 44, AFIPS Press,
Montvale, N.J. 1975.

[12] National Computer Security Center,
Trusted Computer System Evaluation Crite-
ria, DoD STD-5200.28, December 1985.

13] National Computer Security Center,
Trusted Facility Management Guideline,
NCSC-TG-015, Version 1, 18 October
1989.

14] National Computer Security Center, Secu-
rity Testing Guideline, NCSC-TG-023,
(Draft), October 1989, (viz., Section on
specification-to-code correspondence).

[5] Gligor, V. D., "A Note on the Dc-
nial-of-Service Problem," Proc. of the
IEEE Symposium on Security and Pri-
vacy, Oakland, CA, April 1983, pp. 139-49
(also in IEEE Transactions on Software En-
gineering, SE-10, No. 3, May 1984).

[6] Gligor, V.D., et al., "Design and Imple-
mentation of Secure Xenix," IEEE Trans-

15] Tsai, C.-R., V.D. Gligor, and C.S. Chan-
dcrsckaran, "A Formal Method for the
Identification of Covert Storage Channels in
Source Code," Proc. of the IEEE Sympo-
sium on Security and Privacy, Oakland,
California, April 1987, pp. 74-86 (also in-
IEEE Transactions on Software Engineering,
Vol. SE-16, No. 6, June 1990, pp. 569 -
580).

183

EXTENDING OUR HARDWARE BASE: A WORKED EXAMPLE

Noelle McAuliffe

Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, MD 21738

Abstract

In January 1991 Trusted XENIX1 received a B2 TCSEC rating from the National Computer
Security Center (NCSC) [1]. The scope of this evaluation included the following hardware bases:
IBM2 PC AT, IBM PS/2 Models 50, 60, 70,70P, 70T and 80. This paper describes how Trusted
Information Systems, Inc (TTS) extended their evaluated hardware base to include additional
platforms produced by different vendors successfully demonstrating that they had maintained
Trusted XENIX'S B2 rating. Although Rating Maintenance (RAMP3) has not yet been endorsed
for B2 and above products, our experience provides evidence that it is a viable approach for
addressing changes even to higher level products without incurring the cost of performing full
evaluations.

Introduction

In June 1989 TIS obtained the rights to Secure XENIX from IBM while it's evaluation was
underway. TIS continued development and trust analysis on their new product, Tmsted XENIX,
and negotiated with NCSC to continue the B2 TCSEC evaluation of the system. The scope of
this evaluation included the following hardware bases: IBM PC AT, IBM PS/2 Models 50, 60,
70, 70P, 70T and 80. While completing the initial evaluation, we approached our evaluation
team about expanding the list of evaluated hardware platforms. A proposal was made to the team
explaining how we planned to demonstrate that the new hardware bases were compatible. The
unprecedented nature of this request raised many questions whose considerations would have
resulted in an unacceptable schedule delay of the evaluation. TIS decided to proceed with the
evaluation as scheduled and to revisit the clone issue after obtaining the initial rating.

We received our B2 rating in January 1991 and at that time began to reexamine the issue of

'XENIX is a trademark of Microsoft Corporation.

2IBM is a registered trademark of the International Business Machine Corporation.

3RAMP is an acronym for Rating Maintenance Program. This is a program that allows a
vendor to demonstrate that the rating of a product has been maintained across revisions.

184

extending the list of evaluated hardware bases. We established a Hardware Evaluation Process
designed to demonstrate that the hardware bases in consideration were compatible with the IBM
PC AT*. Used in this context "compatible" refers to more than simply being source code
compatible. "Compatible" also means that all of the protection mechanisms provided by the
IBM PC AT to meet the TCSEC requirements are also provided by the new hardware base. Any
differences discovered between the new hardware base and the IBM PC AT must be shown to
be security benign and not to affect the ability of Trusted XENIX to meet the TCSEC
requirements. The specifics of the Hardware Evaluation Process are presented in following
sections.

While establishing our Hardware Evaluation Process we presented our ideas to the Porting
Working Group (now considered the RAMP Working Group) as well as NCSC Management.
In addition we submitted a proposal to NCSC to evaluate 21 clones in a RAMP-like fashion. It
was our suggestion that TIS perform the necessary analysis on the hardware bases in accordance
with our Hardware Evaluation Process and that NCSC would review representative samples of
our work in order to determine the validity of our process. It was our opinion that breaking
down the work in this manner would alleviate concerns regarding how many machines were
evaluated as the burden on NCSC resources would not increase based on the number of machines
as NCSC would not be reviewing every piece of evidence generated for each machine.

In September 1991 we were assigned a team from NCSC of 3 evaluators to perform a "mini
evaluation" of 6 out of the 21 clones. The 6 machines were chosen by NCSC based on NCSC
marketing criteria. The scope of this Clone Evaluation included adding 6 new hardware bases
as well as making software modifications to several device drivers.5 The evaluation team agreed
to basically follow the Hardware Evaluation Process proposed by TIS with some modification.
The actual work break down did involve TIS performing the analysis for each hardware base but
the evaluation team felt it necessary due to the unprecedented nature of the activity to review the
evidence for each machine. In addition the evaluation team reviewed the results from our
security test suites and performed a focused penetration testing effort. The rating on the revised
version of the system, which included the software modifications and additional hardware
platforms, was received in April 1992.

We are currendy focusing on including the remaining 15 machines that have already been
examined by TIS in accordance with our Hardware Evaluation Process just as was done with the
6 machines added to the EPL. We are confident that the remaining 15 machines could be
addressed as a RAMP cycle. In addition to the original 21 hardware bases we examined, we also
continue to perform our Hardware Evaluation Process on new machines. It is well known that
an accreditor can make the decision to approve the use of an evaluated operating system on a
hardware platform not included in the evaluated configuration. Thus, even if a machine is not

4Although the Hardware Evaluation Process can be used to compare any types of machines
we decided to consider the IBM PC AT as our baseline for this initial endeavor.

'Although NCSC would only agree to include 6 machines in the scope of the evaluation we
continued to perform our Hardware Evaluation Process on all of the 21 machines.

185

currently listed on the Evaluated Product List (EPL) we feel that our evidence can prove to be
very useful to an accreditor for certification purposes.

The remainder of this paper provides an overview of the background behind the establishment
of our Hardware Evaluation Process as well as describing the process in detail and provides a
summary of our Clone Evaluation.

Background

Faced with the challenge of establishing what type of analysis was necessary to demonstrate
compatibility we considered many difficult questions. What makes one hardware base compatible
to another? Is a vendors claim sufficient? Or is it sufficient if one can show that the operating
system runs successfully or that the security tests run successfully? What hardware interface
attributes must remain the same? How should penetration testing be handled? Is penetration
testing necessary?

In order to address these question thoroughly we decided to look at the bigger question, that is
how do you make a modification to a B2 operating system and continue to maintain its rating.
We were confident that after understanding this issue the level of work could be adjusted to suit
the type as well as number of changes made. For instance a simple spelling mistake in an error
message shouldn't require the same level of analysis as would a rewrite of memory management.

Changes to the TCB of an evaluated product can be classified into one of two major categories:
those that cause the TCB to non-TCB interface to be modified and those that do not. In some
cases this distinction may be difficult to make but the resulting benefit is that changes to the TCB
that are not visible at the TCB interface may be easier to analyze.

For instance, if portions of the TCB can be modified and it can be demonstrated that the TCB
interface has not been modified, then it can be asserted that the features provided by the original
hardware and software continue to be provided by the modified hardware and/or software. In
addition some of the assurances established in the original evaluation that involved analyzing the
TCB interface, namely the Descriptive Top Level Specification (DTLS) (B2 and above) and/or
the Formal Top Level Specification (FTLS) (Al), and possibly the security testing coverage
would not have been affected by the modification and would not need to be readdressed. If the
security test suite was developed through the utilization of a methodology requiring analysis of
the TCB internals, such as the Grey Box Methodology[7], then its coverage would need to be
reconsidered regardless whether the TCB interface had been modified. We are not stating that
the security test suite should not be run unless the TCB interface is modified. In fact
successfully running the security tests can validate a claim that the TCB interface has not
changed. We are only indicating that in certain cases the security tests would not need to be
reexamined for completeness unless the TCB interface were modified. In addition if the TCB
interface has not been modified then one can assume that the definition of the model still holds
true however previously established mappings may need to be reexamined to ensure their
accuracy.

In terms of covert storage channels, changes that are not visible at the TCB interface can not

186

introduce new global resources that are shared among unpriviliged processes. However internal
TCB changes may affect the manner in which previously identified shared global variables are
used. Therefore one must demonstrate that changes made do not cause a previously identified
shared resource to be used in a manner that would now be part of an illegal data flow. In
addition one must examine the software modifications to ensure that any variables local to the
software cannot be used as part of a covert channel.

The remainder of the assurances established in the original evaluation must always be considered
to determine how they should be modified in order to continue to meet the TCSEC requirements.
Of the these requirements, penetration testing requires some additional discussion. When
performing an analysis of a small change to an evaluated product, we feel a focused penetration
testing effort (versus a full scope effort) should be performed to ascertain that the system is still
"relatively resistant to penetration". This focused effort should build upon the penetrations testing
effort performed during the original evaluation. A full scope penetration testing effort is an
event that should occur only on a predefined periodic basis, not as a part of every NCSC
approved release of a product. It is common understanding that performing penetration testing
does not guarantee that all problems within a product have been uncovered. It is simply an
opportunity for an objective party to examine the system in an attempt to uncover subde flaws
missed by the developer. The appropriate level of effort for penetration testing should be
determined based upon the number and magnitude of changes made to the TCB.

Hardware Evaluation Process

From the general problem of maintaining a B2 rating across new releases of the product, we
extrapolated the conclusions that were pertinent when changing the hardware base. We defined
"compatibility" in terms of two characteristics: (1) In order to be compatible, the hardware base
in question must interact with the software in the same manner as the original hardware base (i.e.
the TCB interface is not modified). (2) It must provide the same physical characteristics and be
accompanied by a comparable set of system integrity tests. Differences in any of these areas
must be shown to not be security relevant. Based on this definition we generated a Hardware
Evaluation Process that defines the necessary steps to determine whether a new hardware base
can be considered compatible to the IBM PC AT.

In order to demonstrate that the addition of a new hardware base does not modify the TCB
interface, the devices within the new hardware base must be compared with the original devices,
i.e. controller cards. An original device is defined to be any device found individually listed on
the EPL for use with an IBM PC AT or found by default within the IBM PC AT. In terms of
interaction with the software we feel a device, say HW2, can be considered compatible with
HW1 if the following conditions hold:

a. The instructions provided by HW1 that are depended upon by the Trusted Operating System
must be implemented in HW2. Differences in implementation (e.g., utilizing DMA capabilities,
memory on board) must be shown to be invisible at the TCB interface.

b. It must be shown that additional instructions or capabilities provided by HW2 are not available

187

at the TCB interface.

In order to perform this comparison we obtained a solid understanding of the hardware interface
characteristics provided by each original device as well as an understanding of the software that
uses the device. In order to facilitate this information gathering, we created the concept of a
Baseline Report. A Baseline Report contains a detailed description of the internals of the
software interacting with the device, the software interface to the kernel, the software interface
to the hardware, and a complete description of the hardware interface. In terms of the hardware
interface description, we indicate which features, registers, commands, provided by the hardware
are used and not used by our software. These Baseline Reports have become part of our design
documentation. They are considered Configuration Items (CI) and therefore changes to them will
be tracked via Configuration Management (CM).

From these baselines we extracted a template of hardware interface characteristics. A two step
process was then used to determine if the candidate device meets the two requirements described
above. The first step involves examining each candidate device to determine whether it differs
from the template in any way. This examination utilizes manufacturer supplied information as
well as internal analysis and penetration testing when necessary. All differences between the
candidate device and the template are noted. The second step involves the analysis of the various
identified differences. When a difference is noted, the information from the Baseline Report is
used to determine if the difference is visible at the TCB interface. If the difference is visible at
the TCB interface a recommendation is made for how to address the difference. If it is
determined that a device cannot be supported without causing the TCB interface to be modified,
then the device driver will need to be examined. It may be determined that the device driver
could be modified in such a way that supporting the device does not change the TCB interface.
This software change will then need to be validated according to the our CM Process. The two
steps, examination and analysis, are performed by different individuals.

All devices that map into I/O address space must be examined via this method. This can include
DMA controllers, interrupt controllers, real time clock, timer, hard disk controllers, floppy disk
controllers, video controllers, parallel port controllers, serial port controllers, and keyboard
controllers. Devices that do not map into I/O address space, namely memory, hard disk drives
and floppy disk drives, need not be examined in this manner, as their functionality is sufficiently
tested via the execution of our Security Test suite. Any additional functionality provided by
these devices is not accessible to the user.

The initial set of 21 additional hardware bases all utilized either Intel 80286 or 80386 CPUs and
in some cases Intel 80287 or 80387 coprocessors. Thus no analysis of these components was
necessary as they are considered original devices.

Evidence generated for each individual hardware base includes a list of the devices included
within each clone indicating the manufacturer name and model or revision number of each
device. For each device not currently included in the EPL list of supported hardware, a template
will be completed comparing the candidate device to the original device. These templates are
maintained as evidence.

188

The device comparisons described above serve as a means to demonstrate that the new hardware
is compatible with the original hardware in terms of interaction with the software. In addition
the physical features of the new hardware must be examined and compared to those found in the
original hardware. The capabilities and usage of each of these features are described in detail
in a document we refer to as the Summary of Evidence. The user's manual associated with the
hardware base normally provides a bulk of this information. Features that need to be explored
include system initialization, booting capabilities, passwords, setup programs, keylocks, special
key sequences, etc. The goal of this activity is to identify how the physical features of the new
hardware base differ from the physical features of the original hardware and to modify the
Trusted Facility Manual (TFM) for Trusted XENIX as necessary to support the new hardware
bases. From the Summary of Evidence we create an entry for the specific hardware base for our
TFM. In general the TFM must describe how to prevent unauthorized access to the internals of
the workstation and to prevent users from interfering with booting Trusted XENIX securely. In
addition if the new hardware base provides a CMOS setup program that might provide a user
with the ability to modify the system date and time, then access to the setup program must be
prohibited. Furthermore the new hardware base may provide additional features that are security
relevant but have not been previously dealt with in the TFM. The TFM must also describe how
access to these features is denied.

In addition the Power On Self Tests (POST) and advanced diagnostics provided with the new
hardware base must be examined to determine whether they are sufficient to meet the system
integrity requirement as were the diagnostics provided by the original hardware platform. Finally
the security test suite must be run on each new hardware base to further support our argument
that the TCB interface was not modified.

Clone Evaluation Process

Summary of Changes

In September 1991 we were assigned a team of evaluators from NCSC who had been tasked to
evaluate six of the many hardware platforms that we had examined. Basically the inclusion of
the new hardware bases involved changes to the hardware layer of the TCB. In addition though
the hardware dependent software layer of the TCB was also modified to include three new device
drivers to support SCSI hard disk controllers. Our initial assessment of these changes was that
they would not cause the TCB interface to be modified.

While performing the necessary actions to demonstrate that the interface had not been modified
by the changes described above, we determined that there were some additional modifications
that should be made to the existing keyboard and video device drivers. The changes to the
keyboard driver remained invisible at the interface and were handled just like the addition of the
new device drivers. However, the changes to the video device driver were visible at the TCB
interface, and were treated in a slightly different manner.

The changes to the hardware layer were handled in accordance with our Hardware Evaluation

189

Process. The following subsection describes how we addressed changes to the hardware
dependent software layer.

Hardware Dependent Software Layer

Changes to the hardware dependent software are handled relatively in the same fashion as they
are at the hardware layer although the type of analysis and evidence generated changes. The first
step involves understanding the change to be made, its ramifications to the product, and then
implementing it in a controlled fashion. As part of this step we determine whether the TCB
interface has been modified and, if not, demonstrate that. The second step involves performing
additional security analysis activities in order to continue to satisfy the TCSEC requirements.

The first step of understanding and correctly implementing a change at the hardware dependent
software layer revolves around our CM process. All additions or modifications to the hardware
dependent software must be examined according to the CM process to ensure that trusted
software is being developed consistent with the policy model, DTLS, security tests and design
documentation and the security policy of the system is not subverted.

Our CM process encompasses a set of activities specific to the development of new software.
New designs and code must examined through a series of reviews before they will be made new
CIs and included in the CM Library. Once a CI has been included in the CM library, changes
to it will be processed according to the maintenance phase of the CM process, which also
involves several reviews.
As part of the CM process, it is determined whether the TCB interface has been modified and,
if so, then the existing design documentation and security test suites are appropriately modified.

Evidence generated from this first step includes the design documentation, unit test
documentation, minutes from review meetings, and CM process documentation. In addition, the
entire Security Test suite, including any new changes made, must be successfully run as a final
step in either approving the addition of a new CI or the modifications made to existing CI's.
Following the reviews included in the CM process and the actual implementation of the change,
we address the modeling and covert channel requirements and perform necessary analysis to
demonstrate that these requirements are still met.

Requirements

The following section summarizes how the B2 TCSEC requirements were addressed for the
Clone Evaluation.

Security Policies. Accountability A detailed description of the changes made to the existing
system was provided. The changes were confined to minor modifications to existing device
drivers and the addition of three new device drivers. These changes were easy to understand and
resulted in minimal change to the TCB interface. The code affected by these changes is referred
to as the I/O subsystem. This subsystem is not responsible for explicitly implementing any of
the required security policies thus the changes have not affected the systems ability to implement
the required policies.

190

System Architecture Same assurances from the original evaluation hold true.

System Integrity For the currently supported system configurations, this requirement is fulfilled
by the power on self test (POST) and a set of advanced system diagnostic tests associated with
the IBM PC AT or IBM PS/2. Although most vendors provide similar test packages, we have
found that the hardware protection mechanisms of the CPU are not sufficiendy exercised and in
some cases, the tests simply are not comprehensive. Thus, we have created our own set of tests
to exercise the hardware protection mechanisms. In addition, we have decided to require that a
suite of diagnostics generated by a third party, Checkit V3.0 provided by Touchstone Software,
be obtained in order to satisfy the system integrity requirement.

Covert Channel Analysis The changes to the hardware layer are not visible at the TCB interface.
Thus, no new global resources shared among processes could have been introduced. However,
the addition of new hard disk device drivers could potentially introduce new local shared
variables or cause already identified shared variables to be used as an illegal channel. Therefore,
we reviewed the drivers to verify that they introduced no new illegal flows and to ascertain that
the shared variables identified in the original evaluation via the review of the original hard disk
driver were used in the same manner. Finally, although the change to the video device driver
was indeed visible at the TCB interface, we demonstrated that it could not introduce any covert
channels, since Trusted XENIX does not allow processes at different security levels to have
simultaneous access to the console. Our covert channel bandwidth analysis was performed on
all of the machines and a report providing an worst case analysis of the results was generated.
The worst case scenarios were all found to be acceptable to the evaluators.

Trusted Facility Management Same assurances from the original evaluation hold true.

Security Testing The changes to the hardware dependent software involved changes to the I/O
subsystem, i.e., device drivers. The I/O subsystem performs no security relevant events and is
not tested as part of the security test suite. Thus the coverage provided by the original security
test suite is still sufficient.

The complete suite of security tests was run on each new hardware base adding further assurance
that the TCB interface has not been affected by the modifications made to the TCB. In addition
our evaluation team performed a penetration testing effort focusing on the peculiarities of each
system, i.e., setup programs, system passwords, etc.

Design Specification and Verification No new subjects or objects were introduced, nor has the
way in which existing subjects access existing objects been modified, thus the assurances from
the original evaluation still hold.

Configuration Management The CM Plan has been broadened in order to address developing new
software to be integrated into Trusted XENIX. The CM process will be invoked for every
change made. Changes to the hardware layer will entail adding the new hardware bases to the
list of hardware maintained in the CM Library. In addition a relationship was established
between the hardware vendor and TIS by which TTS will be informed of changes made to the
supported product line.

191

Security Features User's Guide Not modified.

Trusted Facility Management All supported hardware bases must have a section in the Trusted
Facility Manual describing physical security issues particular to the machine. These new entries
must at a minimum address the following issues.

Special Features: Any special features of the system (e.g. special key sequences, external
buttons, keylocks, passwords, etc) must be described.

Identify Booting Capabilities: A description of the bootable devices will be provided. A
discussion will be included describing how the boot devices can be protected.

Discussion of BIOS: A discussion of the BIOS utilized by the hardware base will be included
listing the functionality provided.

Test Documentation As the security test suite was not modified, the test documentation remains
unchanged.

Design Documentation Design documentation for each new hardware base has been obtained. The
Kernel Architecture Document does not currently describe in detail the various device drivers.
Thus, it did not need to be modified as a result of these changes. However the design documents
created as a result of the CM development activities will be considered part of the Kernel
Architecture Document. As the addition of the new device drivers and the change to the keyboard
device driver are not visible at the TCB interface they did not result in any changes to the
Descriptive Top Level Specification. The change to the keyboard driver however is visible at
the interface and the DTLS was modified to reflect that change.

Conclusions

At the Sixth RAMP Workshop in Los Angeles a draft set of requirements for RAMP at B2 and
above were distributed. These requirements allow for RAMP at the higher levels to be performed
by a variety of different personnel. One of the options includes the combination of the vendor
and 3 to 4 NCSC evaluators, and is expected to take 3 to 9 months. Our Clone Evaluation effort
exemplifies this option. The only differences are that we did not have the opportunity to present
our approach to a Future Change Board 6 nor were we able to be present at the final TRB.
Although both of those actions would have proven beneficial, we feel that the success of our
endeavors provides realistic evidence that RAMP can work with the higher level products. In
some instances we feel that performing a RAMP can be easier on a higher level product as the
system is better layered, more modular and better understood, thus the ramifications of a change
can more easily be determined and addressed.

^The Future Change Board will consist of TRB members, the Chief Evaluator, and other
members of the NCSC evaluator community who have worked with the product.

192

Our experience has demonstrated to us that RAMP should be robust enough to address changes
to any of the operating system layers. The type of analysis performed and the evidence generated
will differ across the layers but the basic philosophy of addressing change should not.

It is essential that RAMP become available for all levels of systems immediately. Vendors at
all levels will always need to make changes to their evaluated products, either to add
enhancements, support new hardware or make corrections. Time is of the essence especially in
terms of supporting new hardware due to its limited lifespan. Once a vendor has made the
decision to support a new hardware base and has performed the necessary analysis there must
be a mechanism by which the hardware base can be included in the evaluated configuration
before the hardware base becomes obsolete.

In conclusion we found our experience enlightening. We are currendy applying our approach
to RAMP with several software applications as well as additional hardware platforms and are
anxious to embark in a recognized RAMP activity.

References

[1] DoD Trusted Computer Systems Evaluation Criteria, DOD 5200.28-STD, National
Computer Security Center, Ft. Meade, MD, December 1985.

[2] "Trusted XENIX Product Evaluation Bulletin," Report No. CSC-PB-004-87, National
Computer Security Center, Ft. Meade, MD.

[3] National Computer Security Center, "Rating Maintenance Phase: Program Document,"
NCSC-TG-013, June 23, 1989.

[4] D. Bell, G. Benson, T. Redmond, D. Sterne, "Trusted Reuse Issues," Internal TIS Report
Number 347, August 24, 1990.

[5] Richard R. Linde, "Operating System Penetration," Proceedings of the National Computer
Conference, 1975.

[6] Richard A. Kemmerer, "The Shared Resource Methodology: An Approach to Identifying
Storage and Timing channels," ACM Transactions on Computer Systems, l(3):256-277, August
1983. University of California, Santa Barbara.

[7] "A Guide to Understanding Security Testing and Test Documentation," National Computer
Security Center, NCSC-TG-023, DRAFT.

193

FINDING SECURITY FLAWS IN CONCURRENT AND

SEQUENTIAL DESIGNS USING PLANNING TECHNIQUES

Deborah A. Frincke [frincke@cs.ucdavis.edu]
Myla Archer [archer@cs.ucdavis.edu]
Karl Levitt [levitt@cs.ucdavis.edu]

Division of Computer Science, University of California, Davis

Abstract

This paper1 presents an automated system (SPLAN) that
can assist in the validation of secure systems. SPLAN,
based on classical planning ideas, takes as input a system
description (specifications and/or code, including concur-
rent programs) and a more abstract specification (e.g., a
specification of disallowed states based on a security pol-
icy) and attempts to generate a sequence of operations
or code statements that will cause the system to reach a
state disallowed by the policy. Thus SPLAN attempts to
generate sequences of operations that violate the security
policy. SPLAN has built-in heuristics to reduce the space
of operation sequences it searches, such as loop detection,
templates of operation sequence schemes likely to expose
flaws, and operations that are flagged as suspicous by a
security flow analyzer. We believe that SPLAN would be
most useful in the validation process when applied after
the use of conventional testing and of a flow analyzer but
before verification is attempted. This paper presents var-
ious examples showing how SPLAN can detect covert pic-
torial channels in a specification for a secure user interface
management system and in an erroneous—and previously
published—mutual exclusion program.

1 Introduction

The Orange Book [2] indicates a number of ap-
proaches in the validation of secure systems, includ-
ing the verification of specifications with respect to a
security policy (for Al certification) and testing (e.g.,
of program code with respect to specifications). A
technique that satisfies the Orange Book's require-
ments for Al certification is to use a security flow
analyzer, for example see [4][15]. Briefly, a security
flow analyzer considers each operation specification
in isolation, and determines if the specification has
the potential of contributing to an information flow

1 We gratefully acknowledge the support of D. Mansur
(Project Manager, Lawrence Livermore National Labora-
tory, 442423-25173) and E. Siarkiewicz (Project Manager,
Rome Laboratory, F30602-88-0-0025).

disallowed by a security policy. The aforementioned
flow analyzers will detect access control violations as
well as covert channels. Furthermore, flow analyzers
carry out essentially syntactic checks on the system
description and, hence, perform quite well even on
large descriptions.

There are several drawbacks to these flow ana-
lyzers. First, they erroneously flag many operations
as insecure: the operations cannot be invoked with
the inputs necessary to produce the disallowed flow,
or they cannot be made visible to a user. In sim-
ple terms, the flow analyzers produce a pessimistic
security analysis of a system; the lower the level of
the specification, the more pessimistic the analysis.
Second, most systems exhibit disallowed flows that
cannot be removed. The security policy mechanized
by the flow analyzers is too strong.

With regard to the first limitation of flow anal-
ysis, a comment by by Gasser [9] is relevant:

Because the syntactic flow analysis tech-
nique only flags potential flow violations,
additional covert channel analysis is re-
quired to determine whether the viola-
tions are real. There are no tools that
help you to do this, since it requires look-
ing at the specification as a whole and de-
ducing or proving additional properties.
A typical argument to support the con-
tention that a flow is not real would be
based on the fact that the specification
lacks certain functions that could exploit
the flow.

Inspired by Gasser's challenge, we have devel-
oped a tool, called SPLAN, that attempts to deter-
mine if a flow is real. SPLAN accepts as input a de-
scription of a system (a specification of its operations
and/or program code, including concurrent code) and
a security policy (in the form of program states disal-
lowed by the policy, e.g., there is no flow except from
a user at a low level to a user at the same or higher

194

level. Of course, it is necessary to define what "user"
means, which in our case is the process (including its
memory and registers) working on behalf of a user.
From this input, SPLAN attempts to generate a se-
quence of actions (operations or program statements)
that will cause the system to reach a state in which
the policy is not satisfied.

SPLAN is implemented in Prolog and based
on classical planning methods, such as those imple-
mented in STRIPS [12]. Such methods are now in
disfavor, primarily because they explore many unpro-
ductive plans before (if ever) hitting on a plan that
works. In our application, particularly when dealing
at the level of concrete program code, many unpro-
ductive sequences would be explored. To improve on
the performance of the STRIPS generation of plan-
ners, SPLAN can apply domain-specific knowledge.
The knowledge it uses includes:

• Operations that must be present in any gener-
ated sequence. For example, a flow analyer will
identify suspicious operations, operations that
SPLAN will include in any sequence it gener-
ates.

• Templates indicating likely actions that can
produce disallowed states. For example, all suc-
cessful attempts to exploit covert channels in-
volve the actions of two or more processes sep-
arated by one or more context switches.

• Loop detection, to prevent the exploration of
nonterminating sequences.

• Distance measures, to assess how far a state is
from the goal state (where the disallowed flow
is consummated).

As motivated above, SPLAN would find use in
determining if formal flow violations detected by a
flow analyzer are real; the security policy in question
is, typically, the mandatory security policy. However,
SPLAN can be programmed to detect violations of
other security-related policies. For example, it can
be used to analyze the code of an operating system
to identify sequences of user inputs that could cause a
system's authentication mechanisms to be bypassed.
The domain-specific knowledge that would reduce the
search space could be that a successful sequence of
actions would include an interrupt after a variable has
been checked with respect to a particular property.

In general, we anticipate that SPLAN-like meth-
ods would be used between testing (where obvious
bugs are discovered) and verification (where the sys-
tem is verifed with respect to a realittic policy - e.g.,
a policy less restrictive than that mechanized in flow

analyzers). Table 1 summarizes the features of test-
ing, verification and SPLAN with respect to their use
in connection with secure systems.

To illustrate the usefulness of SPLAN, this pa-
per provides three examples. The first two involve
resource management systems (specifically, user in-
terface management systems) and the third involves
access control between simultaneously executing pro-
cesses. The area of user interface management was
selected for the first two examples because it is of
interest to explore security problems associated with
such systems. In particular, the user interface man-
ager necessarily has access to all of the graphical in-
terface objects that depict or manipulate data, and
is therefore capable of illicit information transfer be-
tween users. Furthermore, with the addition of a
graphical component to an application, a new group
of channels—pictorial covert channr.lt—become pos-
sible. These channels either (1) occur through the use
of views that are based upon inappropriate data, (2)
are part of shared resources within the underlying
user interface management system or (3) rely upon
interactions between applications, through inappro-
priately captured pictures or events.

The third example combines access control and
simultaneously executing processes. Development of
correct algorithms for the synchronization of concur-
rently executing processes can be difficult; there have
been several incorrect algorithms published. Poten-
tially, one must consider all possible interleavings of
process execution before the algorithm may be said
to be correct. Most concurrent program debuggers
have been developed in order to assist the program-
mer once an error has appeared, rather than to de-
tect potential problems. Some debuggers can detect
potential race conditions; unfortunately, these debug-
gers frequently provide so many false positives that
their value is greatly reduced[ll]. Synchronization
algorithms are relevant to the development of secure
systems because unexpected interleavings of opera-
tions are a common source of many security flaws.

In the remainder of this paper, Section 2 dis-
cusses some related techniques. Section 3 describes
SPLAN, Section 4 gives an overview of SPLAN's im-
plementation, Section 5 provides three sample flaws
that may be found using this method, and Section 6
outlines the work in progress.

2 Related techniques

Testing: Other authors have studied methods for
exposing flaws in software. Typically, as in [13],
dataflow analysis techniques have been used to study
sequential programs. Taylor [18] has extended exist-
ing techniques to concurrent programs, emphasizing

195

Verification Testing SPLAN
Objective Try to prove

correct in general
w.r.t. spec

Try to
show correct/incorrect
for certain input

Try to show
incorrect
w.r.t. common flaw classes

Upon Error Shows what
cannot be
proven

Shows improper
behavior
for some input

Shows an execution path
exhibiting flaw

Completeness;
What do the results mean?

When successful,
proves all cases
correct w.r.t. spec

Shows behavior
correct for some
input set

Shows a flaw or set of
flaws cannot occur
if terminates

User skill/automation High,
considerable effort
but many tools

Varies; often
requires high
familiarity with code

Medium; must know how
to specify flaws and
templates if used

User provides Specification,
code,
property to verify

Executable spec or
code and test cases

Spec or code,
flaw description

Position in Cycle Last First and throughout After some testing,
before (possibly during)
verification

Value of Partial Steps Low
unless complete

Each test supplies
some information
(incremental)

Each flaw check
provides some info
(incremental)

Domain
Knowledge

"Theories" about
security

Path testing,
data flow analysis
(incremental)

Essential; e.g.,
suspicious operations
from flow analysis

False Positives,

False Negatives

None for code
or spec if
complete
Can happen; e.g.,
proof is
weak

None
(may not be
repeatable)
No guarantee; cannot
usually test all
cases

None, but may
not halt

Not for flaws
checked
(completeness)

Table 1: A Comparison of Validation Techniques.

detection of parallelizable code segments with spe-
cial attention to Ada. Knowledge-based techniques
have also been applied to the problem of debugging.
Seviora [17] identifies kinds of knowledge that a de-
bugger could use; for example, knowledge about what
a program should do and should not do, likely flaws
(especially in concurrent programs), and the granu-
larity of testing. The tools surveyed do not attempt
to automatically generate test cases. A more re-
cent knowledge-based debugging system is described
in [19], which uses a knowledge base to reduce the
data from a debugging session to allow for more eas-
ily understood replays. Our tool is more flexible than
the conventional approach of using test data; it can
find general classes of data (i.e., detect sets of flaws),
and may also be used to decide when particular exe-
cution paths lack specified security flaws.

Planning: In [1], Feigenbaum and Barr describe
a plan as "a representation of a course of action." In
this paper, planning techniques are used to develop

a course of action (sequence of instructions) that will
transfer information from one user to another. If this
information transfer is illegal with respect to the de-
sired security policy of the system, then the plan iden-
tifies a security flaw in the system.

Many different planning techniques are discussed
in some detail by Wilensky [20] and Nilsson [12]. One
simple technique used by many planning systems is
forward chaining. In forward chaining, a system first
starts with an initial state, a collection of goals G; to
be achieved, and a collection of actions Ai that may
be used to achieve them. These goals may have vary-
ing importance. Further, it must be possible to exam-
ine two states and determine how 'close' they are to
one another. This examination requires some reason-
able way of measuring distance between states; this
metric will depend upon the components of a state
and may change considerably between applications.

Secure UIMS: The Compartmented Mode
Workstation program, CMW, is the Defense Intelli-

196

gence Agency's trusted computer systems criteria for
a secure X system. A few vendors, including SUN and
SecureWare, have developed versions of X meeting
these criteria. The issues involved in this effort are
summarized by Epstein and Picciotto in [3]; Trusted
X systems attempt to 'graft' security onto systems
that lacked nearly all security features; X was actu-
ally designed deliberately to avoid enforcing security
policies of any type, and contains many mechanisms
to promote sharing between applications.

X is based upon a client/server model, with the
server managing the window manager and clients
(applications) that send requests to manipulate re-
sources, etc.) [16]. X provides minimal protection;
the X server only determines whether or not a partic-
ular client may be connected. All connected clients
are treated equally; in fact, connected clients may
even turn off the requirement that the X server per-
form any checking when future clients request that
they be added to the system. The window manager's
job is to manipulate windows upon the console screen.
X does not offer privileges of any type, so the win-
dow manager is just another client of the server. Our
example illustrates some of the security liabilities of
unrestricted access to graphical systems.

3 A Prototype Testing System

SPLAN, written in Prolog, is based upon the method-
ology used in two earlier systems: TPLAN [7] and
CTPLAN [8]. TPLAN was developed specifically
to detect security flaws in operating system speci-
fications. TPLAN represents the operations of the
system being tested as STRJPS-like rules [5]. The
operations can represent the system at any level of
abstraction, ranging from specifications of the opera-
tions visible at the system interface to statements in a
programming language. Further, the representation
can be in terms of more than a single abstraction,
i.e., a combination of specifications and executable
code. TPLAN has been used primarily to identify
security flaws in simple operating systems, the sys-
tems being represented abstractly in terms of formal
top-level specifications. CTPLAN also represents al-
gorithm statements as STRIPS-like rules. CTPLAN
can detect a variety of flaws in concurrent algorithms,
including deadlock and mutual exclusion. CTPLAN
has been used successfully to detect flaws in algo-
rithms that had actually been published, e.g. in [10].

SPLAN combines these two prototypes, produc-
ing a system that can detect sequences that violate
an information flow policy or mutual exclusion viola-
tions that may be either within algorithms or within
operation specifications.

Use of a system such as SPLAN is of the most

benefit when the programmer is faced with the task
of determining whether or not a software system con-
tains a specific behavioral flaw. When dealing with
certain flaws, such as synchronization of processes
and information flow between processes, it is often
easier for the programmer to state what should not
happen, rather than what should happen. This spec-
ification of an undesirable situation is the goal which
SPLAN uses to construct a plan. For example, per-
mitting two processes to manipulate the same object
at the same time is usually undesirable. A manifes-
tation of this flaw (a violation of mutual exclusion)
may be described easily:

-i((Process 1 modifies O at t) f~)
(Process 2 modifies O at O)

However, the algorithm that actually prevents
this from happening is much more difficult to state.
Furthermore, the granularity of the algorithm's en-
coding may also affect the presence of a flaw, as well
as SPLAN's ability to detect it.

This paper represents characteristic properties
such as mutual exclusion and information flow as
predicates that become the goal for a planner. Ad-
ditionally, certain heuristics that reduce the search
space, such as loop detection are identified.

Using operation specifications and a description
of a particular type of information flow, SPLAN at-
tempts to find a sequence of operations (a plan) that
produces the specified flow. Information flow is de-
scribed by exhibiting an initial—valid—state and a
final state wherein.the user has access to unautho-
rized information. SPLAN attempts to produce a
flaw-illustrating plan if one exists. This is in contrast
to flow analyzers [4], as not all the channels these
systems identify actually permit information flow [6],
and exhaustive checking all sequences is not feasible.
Use of SPLAN permits the user to focus on actual
flaws in the system at the specification stage. A side
benefit of the planning approach is that it produces
a general test sequence, that is, an expression that
subsumes many cases of input values that cause the
flaw to be revealed. For a class of covert channels,
an approximation to the bandwidth can be derived
using an appropriate expression.

4 Implementation of SPLAN

There are four types of rules within SPLAN :

• Architecture/Difference: These rules define
the state; for example, the system widget list in
a UIMS.

• Planning: These rules use heuristics to exam-
ine the algorithm rules and produce a plan to
reach the goal state containing the desired flaw.

197

[user-observed-value,
[list of users [name]],

[symbol table, application [name, application, value]
symbol table, display [name, value]],

buffer,

[[list of application object differences],
[list of display object differences]]

[intermediate plan]]

Figure 1: Xll-style UIMS Architecture

• Algorithm/Operation: Algorithm rules em-
body the SPLAN translation of the algorithm
to be examined; operation rules describe oper-
ations using preconditions and postconditions.

« Input: These rules define the flaw to be exam-
ined, and the initial state of the system (includ-
ing the number of processes executing).

In addition to producing test plans, SPLAN may
be used to symbolically simulate the execution of a
series of statements and to test the validity of a se-
quence of statements. When provided with an initial
state and a test sequence of statements, SPLAN. will
produce the state(s) that will result if they are exe-
cuted, provided that the test sequence is valid.

Architecture Rules: Architecture rules de-
scribe the components of a system. For example,
Figure 1 shows a sample architecture rule for a typi-
cal user interface management system. Architecture
rules modify SPLAN's view of the system state. They
may also be considered predicates to be instantiated
or revoked depending upon the operation applied.
For example, in a UIMS having multiple buffers, there
exist architecture rules allowing SPLAN to observe
and modify buffer values within the current state.
Alternately, one may consider the system to contain
predicates such as "Buffer I of user A has value X"
and "Buffer I of user A is modified to contain value
Y." Architecture rules are used within operation rules
to describe preconditions and postconditions that de-
termine whether an operation is executable under the
current conditions.

Difference rules are used to detect the differences
between an initial and goal state, and to set up as
subgoals the elimination of these differences. If pro-
cess A's application variable Var(A, i) contains the
value X in the initial state and the value Y in the
final state, then SPLAN adds the subgoal object dif-
ference [[A, i, X], [A, i, Y]] to the goal list (widgets
are objects). Every state component has its own col-
lection of difference rules, since the structure of these
depends upon the component's representation.

Planning Rules: Planning rules are used to ma-
nipulate plans. There are two types of planning rules:
those that eliminate 'unnecessary' goals, and those
that select the subgoal to be achieved next. Unneces-
sary goals are goals already achieved (as a side effect
of solving other goals), or goals that do not cause any
real change in state. The system may have two goals:
causing user A's application variable i (Var(A,i)) to
contain value X (Goal 1), and causing user A to be-
come the currently active user (Goal 2). Suppose that
in the initial state, user B is active, user A is blocked,
and only active processes can modify objects. Further
suppose that the system chooses to work on Goal 1
first, and achieves it via the following plan: (1) Make
user A active (Subgoal 1), (2) Write X into Var(A, i)
(Subgoal 2). Step 1 also achieves Goal 2. Steps 1 and
2 accomplish tubgoah 1 and 2 of Goal 1.

The second type of planning rule determines the
goal SPLAN will try to achieve first. In theory, the
goals are achievable in any order: if SPLAN deter-
mines that it is impossible to achieve all goals follow-
ing a particular order, it backtracks and tries them in
a different order. However, this is not always success-
ful, since SPLAN does not recognize all types of infi-
nite loops in planning sequences, though exact dupli-
cation of states are recognized. SPLAN may attempt
to achieve a sequence of goals where the solution to
the first goal 'undoes' the solution to the last goal.
This is illustrated by the following example: Con-
sider a system containing Goal 1 (described earlier)
and Goal 2': make user B active. This time, user A
is active initially. The following sequence will loop
infinitely: (1) Make user B active (to achieve Goal
2'), (2) Make user A active (to achieve Subgoal 1;
this unfortunately undoes Goal 2') (3) Make user B
active (to achieve Goal 2'). Both subgoals could have
been achieved if SPLAN had completed both of the
Goal 1 subgoals before attempting to achieve Goal
2'. To avoid this type of looping, SPLAN uses two
heuristics: complete all the subgoals of a goal at one
time, and complete the most complicated goals first,
since these are the goals most likely to undo other
goals. Goal complexity is measured by counting the
number of subgoals it contains. These two heuris-
tics are insufficient to prevent all infinite loops, so
SPLAN contains a simple form of loop detection to
identify repeated states. This is a common problem
in planning systems [12].

SPLAN's planning rules govern the way in which
tests that expose algorithm flaws are found:

1. SPLAN searches the Algorithm Rules to find a
statement2 within a process that can either im-

2 A statement is an invocation of one of the specified
operations.

198

mediately eliminate a difference, or, if it can-
not, can potentially lead to a statement that
can eliminate a difference (these are found by
backtracking through the algorithm execution
steps).

2. SPLAN next checks to see if the statement can
be executed through to completion.

3. SPLAN then looks to see if execution of the
statement would duplicate a system state ex-
actly. Since SPLAN permits looping, this is
necessary to eliminate infinite attempts to exe-
cute the same series of statements. It will also
produce shorter test plans than if states are per-
mitted to repeat.

4. Steps 1-3 are then repeated, until all differences
have been eliminated.

SPLAN searches for 'forward differences' when
detecting flaws in algorithms, and 'backward differ-
ences' when detecting flaws in operation specifica-
tions. In general, one has more information about
the starting state of an algorithm than about the
final state of an algorithm; operations have no ex-
plicit sequence of steps and thus no 'required' initial
state. Most algorithms have definite specifications
about the starting state of the variables involved,
such as semaphores. This information is not read-
ily available (or necessary) for the final state, since it
is often the incorrect usage of these semaphores and
global variables that results in the flaw that is to be
detected.

Input Rules: Input Rules define the initial and
final state of the system. Each state describes the
following: the state of the system variables and
semaphores, the processes that will exit, and the code
each process executes. SPLAN's purpose is to deter-
mine the sequence of statements that will transform
the initial state into the final state. Figure 5 shows
an initial and a final state used in a later example.
If a variable has value dontcare, then SPLAN will
modify it as needed.

c\\a.nges(Algorithm-name, Process-identifier,
Type-oj-state-object, Name-of-state-object)

prestatement(Algorithm-name,
Current-statement-number,
Previous- ttatement-number)

statement (A Igonthm- name,
Process-identifier, Current-statement-number,
Incoming-state, Outgoing-state)

where Current-statement-number is the step in the al-
gorithm, Type-of-siate-objcct describes the type of ob-
ject modified by the statement, Name-of-state-object
is the actual name of the object changed, Previous-
statement-number lists the possible preceding state-
ments, Process-identifier is the actual process execut-
ing the statement, and the rest are self-explanatory.

The way in which algorithms are encoded for
SPLAN has an enormous effect on the type of flaw
that may be detected. In particular, certain flaws
will only be detected if the statements are translated
with a fine-grained level of atomicity, and others will
be more easily detected with a coarse-grained level
of atomicity, due to reduced search time.The effects
of granularity refinement are discussed in more detail
in [8]; at present, the user is responsible for encoding
algorithms at the proper refinement level.

SPLAN uses a Pascal-like minilanguage to de-
scribe algorithms. The only specialized software sup-
port for synchronization is the semaphore. This
structure was included so that algorithms that use
such structures could be easily implemented and pro-
cessed; in addition, other specialized language struc-
tures used for synchronization (such as monitors and
conditional critical regions) may be readily imple-
mented using semaphores. Test-and-Set and Swap
are included because these instructions are fairly typ-
ical of the type of hardware level support provided for
synchronization; they are defined to be atomic [14].
Once an algorithm has been described in this fashion,
it is translated into Prolog statements such as the one
in Figure 3, which shows the translation of a simple
flag-setting statement. This language subset is suffi-
cient to describe a wide range of algorithms. How-
ever, it is often necessary to implement certain lan-
guage features in terms of these atomic statements,
which may affect the flaws that can be detected.

5 Examples

Algorithm/Operation Rules SPLAN per-
mits systems to be described either in terms of algo-
rithms or operation specifications. Algorithm Rules
are used to encode the algorithms to be tested. Fig-
ure 3 gives an example of the rules that must be de-
fined for each algorithm statement. The rules have
the following form:

This section provides three examples of flaws that
may be discovered using SPLAN. Two of them in-
volve flaws within user interface management system
specifications: a blatant flow of information through
a common cut and paste buffer, and a more complex
form of covert flow.' The third describes a mutual ex-
clusion flaw that violates access control rules within

199

an operating system that permits concurrency.

5.1 Simple Information Flow

This section describes the path that SPLAN follows
to come up with a very simple example of informa-
tion flow within a standard Xll-like UIMS using a
single cut and paste buffer. The operations avail-
able to SPLAN include some standard operations for
reading and writing to specific memory locations, and
two more added to simulate the standard buffer in a
user interface management system: Cut, Pa tic. The
system buffer B uffer is read and written using these
new operations. Clearly, flow between users may oc-
cur via this buffer. As a simplification, the system is
assumed to contain only two users, each with exclu-
sive access to two blocks of memory and having local
program variables Vary. The following are the initial
and final states:

5.2 A more subtle example of insecure
flow

changes(incorrectPcl, 1, yariable, flagl) .
changes(incorrectPcl , 1, pc, 1) .
prestatement(incorrectPcl, 1,0).

statement(incorrectPcl, Id, 1,
state(Semaphored, Pxogrars, Progcounters),
state(Semaphores, leuProgrars, lewProgcounters)) ;-

lookupSymtab(Progcounters, [incorrectPcl, Id], 0),
updateSymtab(ProgTars, [flagl, true], IewProgTars),
npdateSjmtaMProgcounters, [[incorrectPcl, Id], 1],

lewProgcounters) .

Figure 3: Translation of flagl = true

' • Purge(Uteri, k))

Both modify memory; however, Purge can only
write 0 and is thus not useful for transferring
arbitrary information directly.

Choose plan Store(i,k).

Uteri
, * ^
... Store(i, k)

Initial State:

(

{

Vittu(Ui,i) = TOPSECRET-VAL \
Lev.l(U,, i) = TOPSECRET \
Vieui(U3.j) «= SECRET-VAL
Level(U2, •) = SECRET
Vorft/1,0) =< nil >
Var(U7,b) =< nil >

Buffer=< empty > /

Vieui(U},i)

Final State
Vieu.(£/,,.) = TOPSECRET-VAL I TOPSECRET

= {undefined;.
= SECRET
< nil >
TOPSECRET - VAL

Levcl(Ui,i)
View(U2,}\
Level(U2,i)
Varft/j.a) :
Var(U3,b) •-

\ Buffer= < undefined > f

SPLAN begins with the goal of finding a plan
whereby one user obtains information originally con-
tained in the second user's memory. This is stated by
defining an initial state where Uteri's block does not
contain Uteri's information, and a goal state where
User's block does contain Uteri's information.

1. Mem(Uterj,k)0 ^ Mcm(Uters,k)0 ^ 0
Mem(Uteri . *)t = Mem(Uteri, k)t ^ 0
Using Uter^ as the initially active process and
Uteri as the active process in the goal state
shortens the plan, though this is not required
for a correct plan.

Possible Plans for Goal 1:

• Store(i,k) by Uteri, with Var(Uter\,i) =
Mem(Uteri ,k)o

"V'li*,
el(lA.i)-

Vieu/(l/o,>) =
Level(Uz,i) =
VoHU, ,a) =< nil >
Var(U^.b) m TOP SI

TOPSECRET-VAL
TOPSECRET
TOPSECRET-VAL

SECRET

TOPSECRET - VAL

Buffer=< undefined >

This sets up a new goal:

2. Var{ Uteri, i) . = Mem(Uteri ,k)o
Plans for Goal 2:

Possible

• Cut(i, k) with t=0

• Cut(i) with Buffer = Mem(Uteri,k)o

If Cut is chosen, SPLAN must satisfy the pre-
condition that there some object within Uteri's
object set contains the value in Uteri's block.
For illustration, Cut will be chosen.

Choose plan Cut(i).

Uteri
, " s
... Cut(i) Store(i,k)

Vieu.(f/,,i) = TOPSECRET-VAL x
Le»el(C/i,i)= TOPSECRET \
View(l/2,>) = TOPSECRET-VAL
LevtUU2,t) = SECRET
VarfUi.a) =< nil >
VorfVj , b) m TOPSECRET -VAL

Buffers TOPSECRET - VAL I

This sets up a new goal:

3. Buffer = Mem(Uteri,k)o Only a Patte can
cause Buffer to contain the desired value. The
current process cannot do the write, since it
does not have Uteri's information. Thus, Uter^

200

^Application A, TopSec

User 1 run* application
A and generate* Top
Secret information

AppAmnsatat
Security classification
level than App B. to

Actions ofA should
be visible to B.

User 2*i nmi application
B sod generates Secret
inform attoo.

,--—••••.•-••—-^

! Application A, TopSec

User 1 move* back

.:;:;:,',..,::,•;•: ""~

% App B knows that the
'•$wtndow must be
•predrawn; the Secret app
$,has information about
1 what the Top Secret app
£hasdone. i:
-Application B. Secret -

This window is now told
to redraw itself u a
result of act ions by the
top secret appl

Figure 2: Pictorial Channel: Overlapping Windows

must have done the write into Buffer earlier.
This sets up a subgoal that must be achieved
before goal 3.

4. Current process = Uteri

Possible Plans for Goal 4:

• Swap

Choose plan Swap and propagate the goal 3.
Uter3 Uterx

... Swap Cut(i) Store(i, k)

A plan for goal 3 may now be be applied. Pos-
sible Plans for Goal 3:

« Paste

Choose plan Patie(i).

Uter3 Utert

... Paste(i) Swap Cut(i) Store(i,k)
This sets up the final goal:

Var{Uter2,i) = Mem(i,k)o
This may be achieved directly by plan Fetchfi,
k).

from one user to another. This section describes a
more subtle example of information flow, in which
information is transferred indirectly. Here, one user
will observe one of two possible results, depending
upon the actions of a second user. Figure 2 shows
how the information flow occurs. The general idea is
that one user briefly moves a high-level object over a
lower-level object, and then returns it to its original
position. The lower-level object is informed that it
has been obscured and must redraw itself, giving the
lower-level object information about the activities of
the higher-level object. SPLAN uses the initial state
and the two possible final states to develop two plans,
where the result obtained by User B depends upon
User A's actions. In this particular example, the in-
formation flow occurs when A choses to (or refrains
from) repositioning a high security window over a low
security window (Figure 2).

Initial state:

Vicvi{UA,i) = TOPSECRBT - VAL
toc(l/A,.) = ((0,0),(10,10))
View(UB,j) = SECRET - VAL
Loc(UB,}) = f(15,15),(2S,25))
Var(lfg, num) = 0

Result:

Uter, Uterx

Fetch(i,k) Paste(i) Swap Cut(t') Store(i,k)

Since this plan was achieved by working back-
wards from a goal, the actual plan that would be fol-
lowed to pass information between users via a buffer
is:

Final state (User A moves a window):

Vitvi(VA, i) m TOP SEC RET - VAL
toc(VA,.) = ((0,0),(10,10))
VU<v(UB,j) = SECRET - VAL
Loc(UB,i) m f(15,15),(25,25))
Var(l^g,num) = 1

Final state (User A does not move a window):

Uteri Uter3

Store(i,k) Cut(i) Swap Paste(i) Fetch(i,k)

The previous example described an obvious ex-
ample of flow that was easily discovered by SPLAN.
In that example, information was directly transferred

Vitw(UA,i) = TOPSECRET
Loe(UA,0=((0,0),(10,10))
Vicw(UB,j) = SECRET - VAL

'(15, J5),(25,25))
: 0

Loc(dBj) = ai
VaryUjgtnum) =

Final plan:

201

UterA

Move(View(A,j),Loc(View(B,j)),over)
User*

Move(View(A,j),notLoc(View(B,j)),over);
User.

Swap
UterB

Redra ufOPSECRET

If the users are in collusion through a Trojan Horse in
a program belonging to user A, user B can interpret
the REDRAW caused by user A's actions as one bit
of a message. If the users are not in collusion, user B
can still gain some information about A's activities.

5.3 Exclusive access to critical sec-
tions

The concurrent algorithms for which SPLAN is most
appropriate all have certain common characteristics.
The most important is that processes each contain
a critical section of code. The purpose of mutual
exclusion is to prohibit more than one process from
executing this section of code at a time. Processes
may manipulate their own local variables, or shared
variables; in general, the critical section of code is
used to read or modify a shared variable.

Producing a correct algorithm for mutual exclu-
sion is nontrivial; several such incorrect algorithms
have been published. SPLAN can detect the flaw in
Hyman's 'simplified' version of Dekker's Algorithm
for mutual exclusion involving two processes; Hy-
man's algorithm was published in [10].

If an operating system designer uses Hyman's al-
gorithm to enforce mutually exclusive access to files,
for example, access control violations might well re-
sult. Suppose that two users, with clearances of top
secret and secret, have read access to the same file,
classified as secret. Further suppose that the secu-
rity policy of the system permits users to raise the
classification of files (high water mark). If the de-
veloper relies upon the incorrect mutual exclusion al-
gorithm, the code shown in Figure 4 will permit the
user having the lower clearance to read the informa-
tion supplied by the user having the higher clearance.

6 Discussion

vspace-0.05in The methodology described in this pa-
per can be used in conjunction with flow analysis
to identify those formal flow violations that are real.

The methodology can be used before verification and
after more conventional testing has uncovered the
more obvious bugs. So far, it has been applied to
detection of security flaws in small systems: in ad-
dition to interprocess flows in Millen's simple oper-
ating system. The methodology has been used to
detect flow within a Low Water Mark system hav-
ing partially ordered security levels. SPLAN is an
improvement on STRIPS, which essentially does an
exhaustive search, since SPLAN is guided by domain-
specific plan heuristics. The organization of secure
systems makes them especially amenable to this type
of search.

There are, of course, limitations to SPLAN. If it
terminates successfully without a plan, then we have
'verified' that the described flaw is not present. Al-
though the system can detect certain forms of loops,
termination is not guaranteed; thus, SPLAN cannot
be relied upon as a verification system.

Current efforts to improve SPLAN are focused
upon increasing the size of the software system it
can handle, and the number and type of flaws it
can detect. Since SPLAN's planning engine is ulti-
mately based upon backtracking, increasing the num-
ber of possible states decreases SPLAN's speed dra-
matically. We are investigating the use of slicing: the
identification of a subprogram 5 of a program P such
that S has the same functional behavior as P with
respect to a property of interest. Similarly, a slice
of a specification contains only those terms that bear
upon a property. In effect, this will permit SPLAN to
work at a coarser granularity without losing necessary
details, which is much more efficient. Further, we are
adding heuristics that should permit SPLAN to con-
struct plans more rapidly (based upon the tiger team
approach used elsewhere), and are investigating the
usefulness of permitting user input to guide SPLAN's
search as it executes.

References . .

[1] A. Barr and E. Feigenbaum, editors. The Handbook
of Artificial Intelligence. HeurisTech Press, 1982.

[2] Department of Defense. Department of defense
trusted computer system evaluation criteria. Tech-
nical report, 008-000-00461-7, 1985.

[3] J. Epstein and J. Picciotto. Trusting X: Issues in
building trusted X Window systems-or-What's not
trusted about X? 14th National Computer Security
Conference, 2:619-629, October 1991.

[4] R. Feiertag. A technique for proving specifications
are. multilevel secure. Technical Report CSL-109,
Technical Report, SRI International, 1980.

[5] R. Fikes and N. Nilsson. STRIPS: a new approach to
the application of theorem proving to problem solv-
ing. Artificial Intelligence, 2:189-208, 1971.

202

User with Top Secret Clearance

:flag[i] « true ;
: while turn <> i do
: while fi«g[j] do

•kip ;
enddo j

: turn * i ;
enddo j

:<criticil section begins>
: Open Secret file for reading F
: Raise classification of F
-. Close file
: Open Top Secret F for writing
: Write Top Secret info F
: Close file

Us«r sith Secret Clearance

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8a:
8b:
8c:
8d:
8«:
9 :

fl««[i]
while

true ;
e turn <> i do
while fiag[j] do

skip ;
enddo ;

: turn « i ;
enddo ;

:<critical section begins>
: Open Secret file F
: Read info from F
: Close file
:<critical section ends>
:flag[i] * false ;

Figure 4: Access control violation.
: findPlan(6, In, Out, Plan), updateStatedn, Result, Plan)?

In • state(sjntab(Q),
sjmtab([[turn, 0], [inCSl, false], [inCS2, false],

[flagO, false], [f lagl, true]]),
syntab([[[incorrectPcO, 1], 0], [[incorrectPcl, 1], 0]]))

Out « state(symtab([]),
sjntab([[tura, dontcare], [inCSl , true], [inCS2, true],

[flagO, dontcare], [flagl, dontcare]]),
symtab([[[incorrectPcO, 1], dontcare], [[incor-

rectPcl, 1], dontcare]]))
Result « state(symtab([]),

sjmtab([[turn, 1], [inCSl, true], [inCS2, true],
[flagO, true], [flagl, true]]),

syntaM [[[incorrectPcO, 1], 11], [[incorrectPcl, 1], 11]]))

Plan * [[[incorrectPcl, 1], 1],
[[incorrectPcl, l], 2],
[[incorrectPcl, 1], 4],
[[incorrectPcO, 1], 1],
[[incorrectPcO, 1], 2],
[[incorrectPcO, 1], 11],
[[incorrectPcl, 1], 8],
[[incorrectPcl, 1], 9],
[[incorrectPcl, 1], 2],
[[incorrectPcl, 1], 11]]

Figure 5: SPLAN's detection of the flaw in Hyman's Algorithm.

[6] L. J. Fraim. SCOMP: a solution to the multilevel se-
curity problem. IEEE Computer, 16(7):26-33, 1983.

[7] D. Frincke, M. Archer, and K. Levitt. A planning
system for the intelligent testing of software. Fifth
Annual Knowledge-Based Software Assistant Con-
ference, Sept 24-28 1990.

[8] D. Frincke, M. Archer, and K. Levitt. CTPLAN: A
planning-based approach to automatically detecting
flaws in concurrent algorithms. Sixth Annual Knowl-
edge Based Software Engineering Conference, Sept
1991.

[9] M. Gasser. Building a Secure Computer System. Van
Nostrand Reinhold Company, 1988.

[10] H. Hyman. Comments on a problem in concurrent
programming control. Communications of the ACM,
9(1):45, January 1966.

[11] C. E. McDowell and D. P. Helmbold. Debugging con-
current programs. ACM Computing Surveys, pages
593-623, December 1989.

[12] N. Nilsson. Principles of Artificial Intelligence.
Tioga Publishing Company, 1980.

[13] L. Osterweil, L. Fosdick, and R. Taylor. Error and
anomaly diagnosis through dataflow analysis. Pro-
ceedings of Summer School on Computer Program
Testing, pages 35-63, 1981.

[14] J. Peterson and A. Silberschatz. Operating sys-
tems concepts. Addison-Wesley Publishing Com-
pany, 1987.

[15] J. Rushby. EHDM specification and verification sys-
tem: Implementation of formal semantics. Technical
Report SRI Project 8096, report A002, Technical Re-
port, SRI International, SRI International
Menlo Park, CA 94025, 1989.

[16] R. Scheifler and J. Gettys. The X window system.
ACM Transactions On Graphics, 5(2):79-109, 1986.

[17] R. Seviora. Knowledge-based program debugging
systems. IEEE Software, pages 20-32, May 1987.

[18] R.Taylor. A general purpose algorithm for analyzing
concurrent programs. Communications of the ACM,
26(5):362-376, May 1983.

[19] J.Tsai, K-Y Fang, and H-Y Chen. Debugger for con-
current programs. Proceedings 13th Annual Interna-
tional Computer Software and Applications Confer-
ence, September 1989.

[20] R. Wilensky. Planning and Understanding.
Addison-Wesley Publishing Company, 1983.

203

A FOUNDATION FOR COVERT CHANNEL ANALYSIS1

Todd Fine
Secure Computing Corporation

1210 West County Road E, Suite 100
Arden Hills, Minnesota 55112

fine@sctc.com

Abstract

Two different definitions of "covert channels" are discussed, that used by information flow tools and
that assumed by noninterference. A proof is given that any system that is secure with respect to flow
tools is secure with respect to noninterference. Examples are provided to demonstrate the converse
does not hold. We argue that noninterference provides a better definition of "covert channel" since the
information flows identified by flow tools and not by noninterference are "formal flow violations". In
addition, the practice of assuming tranquility when performing a covert channel analysis is questioned
and an information flow tool policy for nontranquil systems is developed.

INTRODUCTION

In this paper, we contrast the definition of "covert channel" used by certain classes of information flow
tools[3] with the definition of "covert channel" assumed in a noninterference analysis[l, 5, 2]. To do so, we
state security policies corresponding to each definition of "covert channel" and compare the policies. We
refer to the policies as the fi-policy and the ni-policy.

The original motivation for this work was to justify the use of noninterference to analyze LOCK• [6]. Since
prior efforts to perform covert channel analysis relied on information flow tools, it was important to clearly
understand the relation between a noninterference analysis and an information flow tool analysis.

The, perhaps, surprising conclusion is that the two policies are not equivalent; any system which has been
shown to be secure with respect to the ft-policy satisfies the ni-policy, but there are some systems that satisfy
the ni-policy while being insecure with respect to the ft-policy. Although this makes it appear that using an
information flow tool provides a more complete analysis than using a noninterference policy, we argue that
the converse is true because the information flows that are identified by an information flow tool but not by
a noninterference analysis do not actually pose any threat.

Although there are similarities between the characterization of flow tools here and that in [5], there are two
significant differences: 1) we do not assume tranquility, and 2) in addition to determining an ft-policy that
implies the ni-policy, we consider whether the ni-policy implies the ft-policy.

The relevance of the first point is that some formal flow violations2 are the direct result of tranquility being
assumed in nontranquil systems. Since the ft-policy developed here applies to nontranquil systems, flow tools
that previously required tranquility can be extended to address nontranquil systems by changing their policy
to the policy developed here. In fact, modifications recently made to the Ina Flo tool [7] were motivated by
the ft-policy developed here.

The relevance of the second point is that a better understanding of formal flow violations can be obtained
by considering why the ft-policy is overly restrictive.

'This paper is based on work performed under contract MDA904-87-C-6011 with the U.S. Government, Maryland Procure-
ment Office (MPO).
©Copyright 1992 Secure Computing Corporation. All rights reserved.

2 A formal flow violation is an information flow that does not represent an illicit flow yet is identified as an illicit flow by an
information flow tool. Formal flow violations are sometimes referred to as false positives.

204

As the ft-policy is a natural extension of the Bell-LaPadula Policy (BLP), these results suggest that a
firmer foundation for covert channel analysis can be obtained by defining "covert channel" in terms of
noninterference rather than attempting to extend the BLP paradigm.

BACKGROUND

MLS systems to date are motivated by practices in the paper and pencil world; each piece of data is assumed
to be labeled with a sensitivity level and each user is assumed to have an assigned set of sensitivity levels to
which he is cleared; a user is only permitted to observe data when he is cleared to the data's sensitivity level.
Although this analogy is natural, it is flawed in that a critical assumption that is implicit in the paper and
pencil world is invalid in the context of MLS systems. While the individual causing an "information flow"
in the paper and pencil world is aware of the "information flow", users of MLS systems are often unaware
that "information flows" are occurring.

For example, it is reasonable to expect an individual to be aware that an "information flow" occurs when he
moves a page between two folders. Because the individual is aware of the "information flow", it is reasonable
to expect him to ensure that the second folder is labeled appropriately for the sensitivity level of the page
that has been moved. On the other hand, when an individual executes a program, he often has no idea what
actions are occurring inside the system. Thus, it is not reasonable to expect the individual to ensure that
whenever information is moved from one object to another, the sensitivity level of the target data item is
appropriate for the transmitted information.

BLP addresses this by constraining the actions permitted by processes operating on a user's behalf. Each
process is assigned an access level and it is required that: 1) each process may only observe objects having a
sensitivity level dominated by its access level, 2) each process may only modify objects having a sensitivity
level dominating its access level.

Suppose a process p causes information to flow from object objx to object obj2. Then, BLP requires that
p's access level dominates obj^'s level and is dominated by obj2's level. Consequently, the sensitivity of the
target for the information flow dominates the sensitivity of the source for the information flow. This suggests
that BLP is sufficient to prevent information flow downward in security level. In fact, it is typical to discover
covert channels even in systems enforcing BLP. The problem is more in the manner in which BLP is applied
than an inherent flaw in BLP.

Two "errors" are commonly made when applying BLP. First, the set of system objects is defined to be
entities such as files and directories; entities such as kernel variables and hardware registers are ignored.
Obviously, any covert channels through the ignored entities cannot be discovered by analysis with respect
to this formulation of BLP. Second, it is assumed that there is an access matrix that is consulted whenever
objects are observed or modified. For example, rather than requiring that a process can only observe lower
level objects, it is required that whenever the access matrix indicates a process can observe an object, the
object is at a lower level. The separate issue of ensuring that the access matrix is always consulted before
allowing an object to be accessed is not addressed by BLP.

Information flow tools such as the Gypsy Information Flow Tool (GIFT)[3]3 attempt to extend BLP to
address both of these deficiencies, but are still inadequate. First, they are typically conservative in their
analysis in that they often identify formal flow violations. Second, they provide no support for distinguishing
between covert channels and formal flow violations. In the following, we examine the cause of formal flow
violations and illustrate how they can be avoided using noninterference.

3Since we are more familiar with the GIFT than any other information flow tool, our ft-policy is greatly influenced by the
GIFT. Although we have attempted to obtain a fairly general result, the degree to which our results apply to other flow tools
is not yet clear.

205

DEFINITIONS

In this section, we define a simple system model and use it to state the ft-policy and the ni-policy. We use
a state machine model of the system with ST denoting the set of system states, OVS denoting the set of
system operations, and stx denoting the state resulting from applying x to st, where x is either a single
operation or a sequence of operations.

To state the policies, we assume a set of levels, C, that is partially ordered by <.

FT-POLICY

To state the ft-policy, we assume that a state is a mapping from state components to values. Formally: V
is a set of values, C is the set of state components, and a state is a mapping from C to V. We use st(c) to
denote the contents of c in st.

The ft-policy requires that a security level be assigned to each state component. If levels are assigned
statically, the system is tranquil; otherwise, it is nontranquil. The disadvantage of a static level assignment
is that it can lead to formal flow violations.

For example, consider the hardware registers available to processes executing in the system. Since these
registers can be both read and written by the current process, they must have the same level as the current
process. Thus, it is not possible to statically assign a level without introducing formal flow violations.

Since each channel identified must be analyzed, a great deal of extra work might need to be done as the result
of identifying formal flow violations. When the set of objects is meant to model all state components rather
than only the files and directories, the system is usually nontranquil. The sensitivity levels of components
such as the hardware registers and kernel variables change as processing proceeds. Consequently, we assume
a dynamic level assignment with level(c,st) denoting the level of component c in state st.

Information flow tools work by identifying targets and sources for information flow. A target for a system
operation is a state component that is changed when the operation is executed. We say that a state
component is changed when either its value or its level is changed. The set of sources for a target is the
set of state components which determine the modifications made to the target. Note that the sources and
targets may depend upon the state of the system when the operation is executed. For example, a request to
write data to a file has the specified file as target only when the request is executed from a state in which
the accesses for the file indicate that it may be written.

To clarify the definitions of sources and targets we formalize them as follows:

• targets(i, st) is the set of components whose value or level is altered when i is executed in st

• sources(t,i,st) is the set of sources for the information flow into t when t is executed in st; rather than
defining sources we simply assume that whenever t is a target for i in st and all of the sources have
the same value in st and sti, then:

t G targets{i,sti) and {stl)(t) = («fi*')(<) and Ievel(t,st%) = level(t,sti*)

In other words, whenever all of the sources for an operation have the same values in two states, the
targets for the operation are the same in both states and the targets are changed in the same manner
in both states. If this condition were not satisfied, then the modifications made by an operation would
be dependent on information other than the sources.

206

Note that we have not actually denned sources; instead we have only placed a requirement on its
definition. Given a target for an operation, flow tools use a set of rules to identify a set of state
components that satisfies the characterization of sources stated above. Since these rules vary from tool
to tool, different flow tools might generate different sources for the same information flow. By limiting
the assumptions we make about sources, we make our work more generally applicable.

Using these definitions it is possible to state the ft-policy. It simply requires that:

t € targets(i,st) and sc € sources (t,i,st) =>• (level(sc,st) X level(t,stl) and level(sc,st) < level(t,st))

The first requirement is the obvious requirement that high-level source data from st not be used to compute
the value stored in a low-level state component in st1. The second requirement is less obvious. It requires
that a target's level in st dominate the levels of each of its sources in st. This prohibits a high-level subject
from causing a low-level object to be reclassified at a high-level. Without this requirement, the policy would
not prohibit a high-level subject from transmitting information downward in level by altering the set of
objects visible at the low-level. Since the two requirements are identical in tranquil systems, flow tools that
assume tranquility only need to generate the first requirement. By doing so, they might fail to address
certain covert channels if the system being analyzed is actually nontranquil. Figure 1 illustrates the two
types of threats addressed by the ft-policy.

a) ob jl b) ob j3 |

High

Low
i

•

1

ob j2 ob j3

Figure 1: a) i has a low-level object as a target and a high-level object as a source, b) i reclassifies a high-level
object as a low-level object

Note that this policy attempts to address both of the "errors" commonly made when applying BLP. First,
it assigns sensitivity levels to all state components rather than only assigning levels to files and directories.
Second, it addresses all information flows rather than only requiring that the accesses permitted by the
access matrix are consistent with the assigned levels.

NI-POLICY

To state the ni-policy, we assume:

• There exists an equivalence relation on states, sti^ist?, capturing when s<i and s<2 "look the same"
to subjects at level /. Intuitively, s<i«s/s<2 holds when the data visible to subjects at level / is the same
in both states.

• Each operation is executed by a subject at some security level.

207

We define seq\l to be the sequence obtained from seq by removing all operations executed by subjects at
levels not dominated by /. In other words, seq\l is the portion of seq visible to subjects at level /.

Now, the ni-policy can be stated as:

This is a very natural requirement; given that sti and s<2 appear the same to subjects at level / and that
seq and seq\l appear the same to subjects at level /, stise1 and s<2Se" should appear the same to subjects
at level /. This is illustrated in Figure 2.

Statel

Look
Same

State2

Seal

Look
Same

Seq2

State3

Look
Same

State4

Figure 2: The ni-policy. If st\ and s<2 l°°k the same to subjects at level / and seqi and se</2 look the same
to subjects at level /, then the resulting states look the same to subjects at level /.

Now that we have defined the policies, we consider the relationship between them.

COMPARISON OF POLICIES

In this section we show that 1) Any system that is ft-secure is ni-secure4, and 2) The converse does not hold.

In obtaining this result, we assume that given any target for an operation, the associated set of sources
contains at least one component at the level at which the operation is executed. This assumption, which we
refer to as Op Assumption, says that if an operation is executed at level /j, then, regardless of the state in
which the operation is executed, there is some state component at level /,• that influences the changes made
to every target. In most systems, each operation is associated with a client subject and the level at which the
operation is executed is the level of the client subject. So, this assumption is satisfied by requiring that the
client subject is a source object for every target. It is not unusual for a flow tool to make this assumption.

It is also important to note that it is necessary to determine the level at which each object can be accessed
to use either policy. For ft-policies, this is done by assigning a sensitivity level to each state component; for
ni-policies, this is done by defining «/. Other than the obvious requirement that outputs visible at a level /
must be labeled with a level greater than or equal to /, the analyst is free to assign sensitivity levels or define
ss; as he sees fit. The system is ft-secure if there is at least one level assignment such that the ft-policy is
satisfied and is ni-secure if there is at least one definition of «j such that the ni-policy is satisfied.

NI DOES NOT IMPLY FT
4 We use ft-secure and ni-secure to mean secure with respect to the ft-policy and ni-policy, respectively.

208

In this section we demonstrate that it is possible for a system to satisfy an ni-policy even though it does
not satisfy the corresponding ft-policy. There are essentially two reasons. First, it is not always possible to
define a level assignment function in a natural way from a given definition of «/. Second, ft-policies are not
flexible enough to take into account dependencies between state components. We now provide examples for
each of these concerns.

Consider the following system. The system has three integer-valued state components. We will denote the
values of these state components in a given state of the system st by st.X, st.hlout, st.h2out. The system
has four security levels, highi, high.2, lou>\, and I0W2. Highi and high,2 dominate loxv\ and lou>2\ high\ and
highn are incomparable; and lou>\ and I0W2 are incomparable.

St.hlout is a data buffer at level high\ for processes at level high\. Similarly, st.h2out is a data buffer at
level higfi2 for processes at level high.2-

Processes with level low\ or I0W2 can invoke only the Write operation. This operation sets st.X to v, a
parameter specified in the operation. Processes with level highi or higli2 can invoke only the Read operation.
This operation copies the value of st.X to either st.hlout or st.h2out depending on the level of the client
subject.

Consider what level to assign to st.X to demonstrate the system is ft-secure. Since st.X can be modified
from both low\ and lou>2, its level must dominate both lou>\ and lou>2- This means that its level must be
highi or high2- Since st.X can be observed from both highi and high2, its level must be dominated by
both highi and high2- This means that its level must be lou>\ or loui2- So, there is no level that we can
assign to st.X that will result in the system satisfying the ft-policy. This demonstrates the first problem
with an ft-policy. There are times when there is no level that can be assigned to a state component. This is
illustrated in Figure 3.

highi h2

lowl low2
Figure 3: A state component for which there exists no meaningful security level. The solid lines indicate the
ordering imposed on the levels. The dashed lines indicate the relations that must hold between the level of
st.X and the other levels for the system to be ft-secure. Obviously, the level that must be assigned to st.X
does not correspond to any of the levels in the system.

To see that this in not a problem when using an ni-policy, 1) define all states to be equivalent with respect
to low\ and I0W2, and 2) define two states to be equivalent with respect to highi and high2 if and only if the
X component and the out buffer corresponding to the level have the same value in both states.

Now, if ops is a sequence of operations, ops\highi is obtained by removing any Read operations executed
from high2. So, the only difference between st"1" and stop'^h*gl>1 is in the .h2out component and stop' &highi
s^oPs\highi sjmj]ar reasoning shows that st°p' &highi st°p'\'"9h:'. Since all states are equivalent with respect
to either of the low levels, it is clear that the ni-policy holds even though the ft-policy does not.

209

The problem here is that the set of levels at which st.X is visible is {high\,high2}- Since this set has no
greatest lower bound, there is no way to correctly assign a level to st.X. Although it might be possible to
address this problem by extending the set of security levels to a lattice, we will not consider this possibility
here because there would still be a more serious problem.

Consider a system having four integer-valued state components, st.A, st.B, st.lout, and st.hout and two
security levels, high and low. St.lout and st.hout are data buffers for, respectively, low-level and high-level
processes and thus have, respectively, levels low and high.

The only operations available to low-level processes are Low Read and Low Write. Low Read copies the value
of st.A — st.B to st.lout, while Low Write performs the assignment st.A <— st.B + v, where v is a value
specified by the client. In effect, these operations allow low level processes to store values in the psuedo state
component st.A — st.B.

The only operations available to high-level processes are High Read and High Write. High Read copies the
value of st.B to st.hout, while High Write atomically performs the assignments st.A «— st.A — st.B + v and
st.B <— v, where v is a value specified by the client. These operations allow high level processes to store
values in st.B while not altering the value low level processes have stored in st.A — st.B.

The Low Read operation has st.lout as a target and st.A and st.B as sources (since both st.A and st.B
influence the value written to st.lout). In order for the flow from st.A and st.B to st.lout to be secure, st.A
and st.B must have a security level of low. The High Write operation has st.A and st.B as targets and the
high-level client process as the source. In order for the flow from the client process to st.A and st.B to be
secure, st.A and st.B must have a security level of high. So, regardless of the manner in which st.A and
st.B are assigned levels, either Low Read or High Write has an insecure information flow. Consequently, the
system cannot satisfy an ft-policy.

To show that the system satisfies an ni-policy, we define 1) two states to be equivalent with respect to low if
the low level output buffer and the difference between the A and B components are the same in both states,
and 2) two states to be equivalent with respect to high if the high level output buffer and the B component
are the same in both states.

Note that High Read cannot alter st.A, st.B, or st.lout. So, if st' is the state obtained by executing a High
Read operation in st, then st and st' are equivalent with respect to low. Although, High Write can alter
st.A and st.B, it cannot alter their difference. So, a similar result holds for High Write.

Now, suppose st\ and st'2 are the states resulting from applying an operation to sti and st2 and that
sti ttiow st2. Then, the definitions of Low Read and Low Write are such that st[fHiow st'2.

From these observations, it is quite easy to demonstrate that the ni-policy holds. High-level operations
cannot change the view at level low while low-level operations do not make use of information that is not
visible at level low.

This example shows that it is possible for a system to satisfy an ni-policy even though it does not satisfy the
corresponding ft-policy. The problem with the ft-policy is that it cannot recognize that even though both
high and low level processes can observe and modify st.A and st.B, the operations in the system prevent
them from doing so in a manner that would allow information to flow to the other level.

FT IMPLIES NI

Although systems can satisfy the ni-policy without satisfying the ft-policy, any system that is ft-secure is
ni-secure. This is captured in the following theorem (a more formal statement and proof can be found in
W):

210

• Theorem: If a system satisfies the ft-policy with a particular level assignment function and Op As-
sumption holds, then there exists an equivalence relation s»j for which the system satisfies the ni-policy.

• Proof Sketch: We must show that yseq,sti,sti,l: s<iSSjs<2 => s<isegss|S<2
se9''-

- Define s<i«s;s<2 as Vc, s<i(c)«|S<2(c), where s<i(c)«|S<2(c) means:

ltvel{c, st{) •< I O level(c, s<2) ^ '

and if level(c,sti) < I and level(c, s<2) d: 'i then «*i(c) = st2{c)

- Suppose t is a target of an operation. Since the system is ft-secure, both the old and new level of
the target must dominate the level of any of the sources. The Op Assumption requires at least
one of the sources to be at the level at which the operation is executed. So, the old and new level
of any target dominate the level at which the operation is executed.

- Suppose st(c) /s;s<J(c). Then, c is a target of j since either its level or value is altered by i. Thus,
its level must dominate that of /j, the level at which the operation is executed, in both st and stl.
If /,• is not dominated by /, then the transitivity of the dominates relation implies that the level

of c must not be dominated by / in either state. This would be a contradiction since s/(c)«;s<'(c)
holds whenever c's level is not dominated by / in either state. Consequently, the only operations
that can alter entities visible at or below level / are those operations executed at levels dominated
by/.

- Now, suppose sti^isti and consider an arbitrary component c. If c's level is not dominated by /
in either sti1 or s<21, then stil(c)«|S<2a(c). Otherwise, the ft-policy requires that the levels of all
of the sources be dominated by / in either sti or st2- Then, the definition of sources requires that
c have the same value and level in sti1 and st2

%. So, in either case, s<it(c)ss/s<i,(c).

- This analysis shows that whenever two states look the same at level /, the states resulting from
applying any operation look the same at level /. Combining this with the observation that oper-
ations executed at levels that are not dominated by / do not alter anything visible at level / it is
clear that the state resulting from applying a sequence seq of operations looks the same at level
/ as the state resulting from applying seq\l. Thus, the ft-policy and the Op Assumption are
sufficient to establish the ni-policy.

This shows that any system that is demonstrated to be secure using a flow tool can be demonstrated to be
secure using a noninterference policy.

CONCLUSION

Without a generally accepted definition of what a covert channel is, it is not possible to prove either of the
definitions proposed in this paper correct. However, based on the examples presented in this paper, it is
reasonable to conjecture that the definition in terms of interferences between subjects is a better definition.
The examples of systems that satisfy the ni-policy even though they do not satisfy the ft-policy seem
intuitively secure. If these systems are accepted as being secure, then the definition of covert channels in
terms of flows between sources and targets must be accepted as being too restrictive. As the ft-policy is a
natural extension of BLP, the analysis in the preceding sections also suggests that BLP should not be viewed
as the overall system policy.

Although BLP and the ft-policy have deficiencies, this does not mean that they cannot be useful. Analysis
with respect to BLP can often provide support for an analysis with respect to the ni-policy. Furthermore,
tools have been constructed to simplify analysis with respect to an ft-policy, while no tools have yet been

211

constructed to simplify an analysis with respect to an ni-policy. Thus, analysis with respect to an ft-policy
is typically more automated than analysis with respect to an ni-policy.

Still, it is important to understand the limitations of these approaches. If one accepts that the definition of
covert channels in terms of flows from sources to targets is too restrictive, then one must accept that tools
based on the ft-policy are forever doomed to be overly conservative. No matter how much additional work
is spent on such tools, there is always the possibility of formal flows being identified. This suggests that a
trade-off must be made between the manual effort required to distinguish between formal flow violations and
covert channels and the manual effort required to perform analysis with respect to the ni-policy.

An important area for future research is comparing the policy enforced by flow tools other than the GIFT
to the ni-policy. If there are flow tools that enforce policies that are identical to the ni-policy or closer to
the ni-policy than the ft-policy stated here, then those flow tools might be more useful than tools enforcing
the ft-policy. In any case, it would be interesting to know the relationship between the policies enforced by
the various flow tools and the ni-policy.

Acknowledgments

Thanks to J. Thomas Haigh and Richard O'Brien for reviewing this paper.

References

[1] Todd G. Fine, J. Thomas Haigh, Richard C. O'Brien, and Dana L. Toups, Noninterference and Unwinding
for LOCK, Proceedings of the Computer Security Foundations Workshop II, 1989, pp. 22-28.

[2] J. Thomas Haigh and William D. Young, Extending the Noninterference Version of MLS for SAT, IEEE
Transactions on Software Engineering, Volume 13, February 1987, pages 141-150.

[3] John McHugh, Robert L. Akers, and Millard C. Taylor, GVE Users Manual: The Gypsy Information
Flow Tool, A Covert Channel Analysis Tool, Computational Logic, Incorporated, 1989.

[4] Todd Fine and Barry Miracle, LOCK Covert Channel Analysis, Secure Computing Technology Corpo-
ration, 1990.

[5] John Rushby, Mathematical Foundations of the MLS Tool for Revised Special, SRI International, 1984.

[6] O.S. Saydjari, J.M. Beckman, and J.R. Leaman, LOCK Trak: Navigating Uncharted Space, Proceedings
of the 1989 IEEE Computer Society Symposium on Security and Privacy, 1989, pp. 167-175.

[7] Steven T. Eckmann, An Information Flow Model for FDM (Draft), Unisys Defense Systems Inc., 1991.

212

GENERAL ISSUES TO BE RESOLVED IN ACHIEVING
MULTILEVEL SECURITY (MLS)

Bill Neugent
The MITRE Corporation

7525 Colshire Dr.
McLean, VA 22102, U.S.A.

703-883-6632

1. Introduction*

Lack of Multilevel Security (MLS) within United States (US) Department of Defense
(DOD) computer systems is recognized as a significant shortcoming, because it limits
interoperability and data fusion. To help address this problem, the Joint MLS Technology
Insertion Program was officially established in January 1990. The program is managed by
the Defense Information Systems Agency (DISA) and the security coordinator is the
National Security Agency (NSA). The purpose of the program is to expedite the fielding of
MLS operational capabilities within DOD. This paper is derived from guidance produced
by the program [1].

This paper summarizes the issues that underlie and drive efforts to achieve MLS, along
with a proposed strategy in each area. The Joint MLS Technology Insertion Program by
itself does not have the authority or resources to resolve all of these issues, but it can help
to identify the issues and marshal resources to address them. Table 1 provides a summary.

2. High User Expectations

Users desire affordable, easily-implemented operational enhancements that can be
implemented within a year or two. Especially with the number of trusted products now
coming available, users will be vulnerable to exaggerated or overly optimistic claims about
the new products.

The strategy is to field security guards or other limited commercial solutions immediately,
while planning for subsequent evolution. The strategy also is to support and encourage a
conservative, realistic view of trusted products. For example, when users state a
requirement for MLS, what they often envision is a system that can support unclassified
through TOP SECRET data at no extra cost and with no loss of functionality or
performance. Such users must be educated in the vision of MLS as it might realistically be
achieved, rather than MLS as it is idealistically visualized.

This paper is based on work performed under Contract DAAB07-91-C-N751 for the
Defense Information Systems Agency (DISA).

213

Table 1. Issues and Strategies

Issue Strategy
Users desire quick, affordable, simple
solutions

Field limited solutions where appropriate;
encourage realistic expectations

B2 products are needed; most are Bl Use B2 products if feasible; use B1 and
B1+ products with operational restrictions

Integration of diverse products is difficult Keep initial efforts simple; use testbeds;
develop system-wide security policy

Current trusted products are incomplete Use where feasible; identify needed
capabilities

Certification is complex and requires scarce
skills and substantial time

Work to simplify process; ensure supported
MLS certifications are adequate

Accreditors might approve systems for
MLS without adequate safeguards

Encourage compliance with policy; ensure
adequate certification resources

Trusted products often are too difficult to
manage and use

Review early for these qualities; balance
operational and security needs

Critical guidelines and standards still are
evolving

Work closely with such efforts; ensure
integration and completeness

DOD funding cutbacks threaten some
efforts

Emphasize return on investment, especially
on near-term efforts

3. Effective Use of Bl Products

A critical issue is the effective use of B1 products, which are those products designed to
satisfy the requirements for a class Bl system in accordance with the Trusted Computer
System Evaluation Criteria (TCSEC). The issue with B1 products has two aspects. First,
Bl products are much easier to achieve technologically than B2 products and as a result are
the primary targets of vendor efforts, especially for workstations and Database
Management Systems (DBMSs). Second, according to enclosure 4 of DOD Directive
5200.28, Bl products can be trusted only in environments where the risk range is one [2].
An example of an environment with a risk range of one is one in which a system contains
SECRET data and supports some users cleared only to CONFIDENTIAL. Almost all DOD
environments requiring MLS capabilities have a greater risk range than one. The bottom
line is that products are of little use unless they can support a risk range of at least two,
which would be sufficient to separate TOP SECRET data from SECRET-cleared users - a
key requirement. According to the DOD Directive, B2 products can support a risk range of
two, but Bl products cannot.

So in the near term and beyond, the strategy is to use B2 and above products where they
are available and meet user needs and to encourage further development of B2 products.
B2 products are the preferred near-term targets, because they should be attainable in the
next few years and because there are legitimate security reasons for the B2 assurance
requirements (e.g., system architecture, configuration management).

Nevertheless, while it would be desirable to focus primarily on B2 products, currently
there are more Bl than B2 or above products. Furthermore, some Bl products meet
critical user requirements that B2 products do not meet, such as the workstation
requirement for trusted window management. So the strategy is also to experiment with

214

Bl products in the near term and to use them operationally, but only with acceptable
operational restrictions. Although Bl security is not ideal, Bl products still permit an
investigation of MLS interoperability issues and a determination of what functionality is
needed in MLS systems.

Operational restrictions are needed with Bl products, however. An example of an
operational restriction that might be appropriate in some cases is to require all system users
to be cleared to the highest level of data supported by the system, but to allow users to
access remote systems that operate at lower security levels. Note that a threat analysis can
be helpful in identifying which restrictions best counter threats and could reveal that a
particular threat environment does not warrant B2 protection (or, in the opposite case,
warrants greater protection). Bl products such as Compartmented Mode Workstations
(CMWs) that include useful B2 and B3 features and assurances are preferred over products
that are only minimally Bl; such B1+ products would require fewer operational
restrictions.

The case might be made that, in using B1 products where B2 or higher products are
preferred, DOD undermines the market for B2 or higher products. On the other hand,
DOD has actively supported the many efforts to develop Bl products by working with the
vendors and evaluating the products. For DOD now to find little operational use for such
products might undermine the market for trusted products in general, including B2 and
above products. The strategy thus is to take a balanced approach, using available products
in the near term and fully exploiting B2 and above products as they come available.

Continued emphasis on B3 or higher products also is important These products, though
involving greater development risk, have a greater potential payoff. The higher
development risk derives from the technical difficulties in developing B3 or higher
products. The greater potential payoff is due to the increased trustworthiness of the
products and the increased range of security levels supportable. Aside from the greater
potential payoff, another reason to emphasize B3 or higher products is to ensure a
marketplace for such products.

4. Integration

To date, the TCSEC and related guidance have focused on particular types of products;
little attention has been placed on integrating different products. It has become clear,
however, that careful integration is necessary for effective MLS operation. For example, it
cannot be assumed that the combination of two trusted products is trusted. Integration
risks exist when integrating:

o Multiple homogeneous components that were designed for standalone
security operation

o Multiple components from different vendors

o Heterogeneous components, e.g., workstations, hosts, DBMSs, guards,
and network products

o Products built to different levels of assurance, e.g., a commercial biometric
authentication capability and a B2 workstation

215

o MLS and system high components

o Nonsecure commercial applications and trusted commercial components

o Trusted products and operational field applications

o Products that enforce different security policies

The integration risks are that the sum of the products (1) might not work correctly, (2)
might not provide complete or correct enforcement of security policies, (3) might invalidate
the security of individual component products, and (4) might introduce new security
problems outside the scope of any single component

The strategy to address this issue is to use testbeds to integrate limited, initial
configurations and to identify and encourage the development of the missing pieces.
Furthermore, a system-wide security policy must be prepared to ensure that the multiple
products involved work together correctly.

5. Limited Capabilities of Current Products

Closely related to the issues of using Bl products and integrating different products is the
fact that current products are quite limited in their capabilities. For example, some user
interfaces to trusted DBMSs are not yet MLS, necessary trusted communication protocol
software does not yet exist. In general, vendors are aware of these shortcomings and
trusted product capabilities will improve as the technology and marketplace mature.

The strategy is to expedite evolution of both the technology and the marketplace by using
current products to the extent feasible and by identifying, encouraging, and if necessary
supporting development of needed capabilities and changes. An initial list of significant
needed capabilities is as follows:

o Trusted communication protocol software, e.g., Transmission Control
Protocol (TCPyinternet Protocol (TP)

o Security labeling standards that permit integrated labeling among operating
systems, DBMSs, network protocols, and selected applications (e.g.,
messages)

o B2 workstations with acceptable user interface, capability, and performance

o B2 DBMSs with acceptable user interface, capability, and performance

o Commercial Communications Security (COMSEC) Endorsement Program
(CCEP) and Secure Data Network System (SDNS) products that are trusted
both for COMSEC and Computer Security (COMPUSEC)

o Trusted e-mail

o Trusted central security management of distributed trusted workstations and
servers, including central auditing

o Strengthened authentication

216

o Simplified security management interface

o Strengthened audit data analysis, reduction, and archiving

o Trusted applications

6. Certification

Another issue involves the certification of MLS systems. Certification is the technical
assessment of whether a system meets its security requirements [3]. The major danger in
certification is that the technical assessment of security will not be adequate (e.g.,
substantial vulnerabilities will be overlooked), due to lack of sufficient certification
resources or properly qualified certification personnel. This is a fundamental problem.

An important aspect of the problem is certification complexity. For example, Evaluated
Products List (EPL) operating system evaluations are narrow in scope; while they address
TCSEC compliance, they do not address trusted network interfaces. Yet most EPL-rated
operating systems have little operational utility unless they support network
communication. The certification issue is that, when such a product is used in a network,
the rating of the product cannot be assumed to apply to the combined product and network.
Because of this, the certification done to assess the combined product and network must
reassess areas that were addressed in the NSA product evaluation. For example, the
Verdix Secure LAN (VSLAN) EPL summary states that combining VSLAN with other
trusted components such as MLS hosts "may introduce new covert channels or penetration
scenarios that were not evident from the evaluation of either component by itself; a
complete network system must always be evaluated as a whole to ensure that the
components together enforce the overall policy" [4]. This need for additional evaluation
can add substantial complexity to the certification effort, especially if the system includes
not only workstations and networks, but also DBMSs and trusted applications.

Yet despite the narrow scope of the NSA product evaluation, such an evaluation might take
a calendar year or two (in part, because it is done in parallel with product development).
This often is longer than the lifespan of the particular software version being evaluated.
Certification reviews, being more broad in scope than product evaluations, introduce
additional complexities, yet typically must be done in less calendar time. As examples of
certification complexities, certification procedures must accommodate (1) assessment of
compliance with complex security requirements (including integrity and denial of service),
(2) modification of evaluated products, (3) use of evaluated products in ways not
encompassed by the evaluation, and (4) agreements across accreditation boundaries. Such
complexities can make it difficult or impossible to find adequate time and resources for
certification.

Certification for MLS requires the services of specialized experts in the particular
technologies employed and must include penetration testing. The scope of certification
efforts must encompass the entire integrated system, rather than be limited to a subset of the
components involved [5]. Guidance and training are needed in certification, but the fact
remains that the most important aspect of certification is the use of objective, qualified
specialists to perform the work. Without this expertise, certification reports have a high
likelihood of containing incorrect or misleading information.

217

The strategy in the near term is to ensure that certification plans and resources are adequate
for the systems under scrutiny. For the longer term, the proposed strategy is to look for
ways to reduce resources needed for certification and to support government efforts to
produce certification guidance.

7. Accreditation

Accreditation is the management decision to operate the system [3]. The accreditation
decision is based upon certification findings and other inputs. The major risk in
accreditation is that accreditors might decide to operate systems without adequate security
safeguards. For example, according to policy, CMWs and Bl workstations are to be used
in situations where risks are minimal (e.g., CMWs are intended for use in compartmented
mode, in which all users are cleared to the highest level of the data processed). However,
the functional characteristics of these workstations are such that they can be used with no
changes to support full-MLS operation (e.g., with uncleared users and TOP SECRET
data). DOD policy strongly recommends against such usage, but accreditors have the
authority to use trusted technology however they see fit [2]. Furthermore, some vendors,
when questioned about how their trusted products can be applied, say only that the decision
rests with the accreditor.

This situation could lead to fundamental changes in the meaning of MLS. That is, since
many trusted products currently are targeting Bl, some near-term MLS systems will be
based on Bl technology. Since most meaningful MLS environments require at least B2
(see section 2), it seems inevitable that some accreditors will accredit Bl technology to
suffice where B2 technology is desired. Ultimately, a body of accreditation precedents
could exist that threatens to override current policy recommendations [2].

So this accreditation risk threatens not only the security of individual systems, which might
be accredited to operate without adequate safeguards, but also the underlying policy
infrastructure that defines what trusted technology is and how it should be used. Of
course, the opposing risk also must be kept in mind ~ that overly conservative accreditation
decisions will result in the lack of needed operational capabilities. The purpose of MLS is
not to maximize security, but to improve operational capabilities while maintaining
sufficient security. Conceivably a decrease in security might be acceptable if there is a large
gain in operational capabilities. So accreditation decisions must avoid both extremes.

This is an important issue area. The strategy is to provide accreditors with pragmatic,
responsible guidance to follow in making their accreditation decisions. In general, the
guidance is to ensure that accreditations comply with DOD policy and adequately address
environmental needs, with full consideration of asset value, threats, vulnerabilities, and
residual risks. This ensures that MLS accreditors are informed of policy and have adequate
planning and resources for certification. Meanwhile, DOD has identified uniform
accreditation policy as a critical area needing attention.

8. Ease of Management and Use of MLS Systems

Ease of management and use of MLS systems is a critical topic, because to date too much
attention has been placed on making trusted products secure from the inside out (i.e., from
an internal technical standpoint). Not enough attention has been placed on making trusted

218

products easy to manage and use. Unless trusted products are easy to manage and use,
they either will be used ineffectively or will not be used at all.

With respect to ease of management, insufficient attention has been placed on managing
(administrating) MLS systems. Some common commercial products (e.g., UNIX) are so
complex to administer that system administrators must be highly trained and even then are
susceptible to errors that deny service or cause serious security violations [6]. Since
system administrator error is an important source of security violations and since most
DOD organizations do not have additional personnel to dedicate to this role, security
products must minimize the number of people and the amount of training required for
security administration and must include adequate and understandable system
documentation.

To reduce security management risks, tools are needed to simplify the task and guidance is
needed in setting and managing initialization parameters and other security-related tables.
Tools are needed to help administrators manage multiple systems (e.g., centrally change
permissions and gather audit data). Tools are needed to analyze audit data. Management
tools are evolving, but much progress is needed.

With respect to ease of use, many MLS development failures have resulted because
products were unacceptably cumbersome or because they simply did not solve the user's
MLS problem. An example of an unacceptably cumbersome product is one that forces
users to log off and then log on to enter data at different security levels. Regarding not
solving the user's MLS problem, there are many products that, taken by themselves, do not
fully satisfy MLS needs. For example, an MLS operating system alone might not satisfy
needs for MLS databases or e-mail. An MLS operating system alone cannot automatically
sanitize data; application-unique trusted software is needed. Data received from a system
high system might have to be downgraded by human review, even in an MLS system.

Other risks related to use of trusted technology include possible higher cost and reduced
performance of security products, compared with products that do not provide sufficient
security for MLS operation. While these impacts are steadily lessening, where they remain
they can present major obstacles to MLS operation. An Armed Forces Communications
and Electronics Association (AFCEA) Information Systems Security (INFOSEC) study
concluded that "transparent INFOSEC is a critical system goal," in mat INFOSEC must be
user friendly and minimize introduction of performance degradation [7].

The strategy in these areas is to ensure that MLS efforts adequately address security
management and satisfy user operational needs by incorporating reviews early in
development and acquisition efforts to assess those topics.

9. Evolving Guidelines and Standards

Guidelines and standards that impact MLS are still evolving and will not be completed for
several years. Much work is needed, especially in security labeling, where there is a need
for label compatibility among communication protocols, DBMSs, operating systems, and
applications. Such label compatibility is needed both for product integration and for
interoperability among systems. The strategy is to pay close attention to this area in

219

acquiring and integrating trusted products and to monitor the status of efforts to produce
guidelines and standards.

10. POD Funding Cutbacks

DOD faces major funding cuts in the Fiscal Year (FY) 1992-1997 period that will eliminate
all but the most essential system enhancements. MLS efforts have the potential to reduce
costs and also improve mission effectiveness. Because of the development risks and
uncertainties currently associated with MLS, however, MLS efforts might also result in
increased development costs. In some cases, there might be a high cost to transition to
MLS that is more than offset by lower operational costs once the transition is complete.

The strategy is to emphasize cost reduction and return on investment Particular emphasis
will be placed on ensuring that near-term fielding efforts provide acceptable return on
investment, so that a favorable climate is maintained in which to pursue longer-term
investment in MLS capabilities. Where MLS cannot cut costs, it must be clear - as with
the "smart" technology used in Operation Desert Storm ~ that the operational benefits (e.g.,
improved data fusion) justify the costs.

References

[1] DISA, September 1991, Target Architecture and Implementation Strategy for the Joint
MLS Technology Insertion Program, Arlington, VA.

[2] DOD, 21 March 1988, "Security Requirements for Automated Information Systems,"
DOD Directive 5200.28, Washington, DC.

[3] NCSC, 21 October 1988, GLOSSARY of Computer Security Terms, NCSC-TG-004,
Version-1, Ft. Meade, MD.

[4] NSA, 22 August 1990, "Verdix Corporation VSLAN 5.0 EPL Entry," DOCKMASTER
on-line EPL, Ft. Meade, MD.

[5] National Institute of Standards and Technology (NIST), 27 September 1983, Guideline
for Computer Security Certification and Accreditation, FIPS PUB 102, Gaithersburg,
MD.

[6] Curry, D. A., April 1990, Improving the Security of Your UNIX System, Information and
Telecommunications Sciences and Technology Division (ITSTD)-721-FR-90-21, SRI
International, Menlo Park, CA.

[7] AFCEA, 30 April 1989, The Armed Forces Communications and Electronics
Association Information Security Study, AFCEA.

220

Implementation Considerations for the

Typed Access Matrix Model in a

Distributed Environment
Ravi S. Sand.hu and Gurpreet S. Suri1

Center for Secure Information Systems
k

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

ABSTRACT The typed access matrix (TAM) model was recently defined by Sandhu. TAM
combines the strong safety properties for propagation of access rights obtained in Sandhu's Schematic
Protection Model, with the natural expressive power of Harrison, Rusio, and Ullman's model. In
this paper we consider the implementation of TAM in a distributed environment. To this end
we propose a simplified version of TAM called Single-Object TAM (SO-TAM). We illustrate the
practical expressive power of SO-TAM by showing how the ORCON policy for originator control
of documents can be specified in SO-TAM. We provide arguments to support our conjecture that
SO-TAM is theoretically as expressive as TAM. We show that SO-TAM has a simple implementation
in a typical client-server architecture. Our design is based on access control lists as the principal
means for enforcing access to subjects and objects. In addition, certificate servers are introduced
for generating certificates for checking access rights in those cases where access control lists are
insufficient. A major advantage of our design is that atomicity of operations does not require a
distributed commit.
Keywords: Access Matrix, Distributed Systems, Secure Architectures, Access Control Lists, Certifi-
cates

1 INTRODUCTION

Distributed systems have become the prevalent mode of computing. Modern systems offer a great
deal of flexibility in tailoring a user's environment. The physical distribution of data and other
resources can be made as transparent as a user wishes. It is important that security researchers and
practitioners provide similar flexibility with respect to access control mechanisms.

To provide flexibility in access control we first need a flexible model which can express a rich
variety of security policies. In our opinion flexibility is achieved by allowing users to propagate access
rights to other users, with a combination of discretionary and mandatory controls. We would like
to give individual users as much discretionary choice as possible, within the constraints required to
meet the overall objectives and policies of an organisation. For example, members of a project team
might be allowed to freely share project documents with each other, but only the project leader is
authorized to allow non-members to read project documents.

Security models based on propagation of access rights must confront the safety problem. In its
most basic form, the safety question for access control asks: is there a reachable state in which a
particular subject possesses a particular right for a specific object? There is an essential conflict
between the expressive power of an access control model and tractability of safety analysis. The

1 The work of both author* if partially supported by National Science Foundation grant CCR-9202270 and National
Security Agency contract MDA904-92-C-5141. *

© 1992 Ravi S. Sandhu and Gurpreet S. Suri

221

access matrix model as formalized by Harrison, Ruzzo, and Ullman (HRU) [5] has very broad
expressive power. Unfortunately, HRU also has extremely weak safety properties.

Recently Sandhu [9] has shown how to overcome the negative safety results of HRU by introducing
strong typing into the access matrix model. The resulting model is called the Typed Access Matrix
(TAM). TAM combines the positive safety results for the Schematic Protection Model [6] with the
natural expressive power of HRU.

The safety problem is closely related to the so-called fundamental flaw of discretionary access
control (DAC). DAC is vulnerable to Trojan Horses, in part because Trojan Horse laden programs
can surreptitiously modify the protection state without explicit instruction from the users. However,
even Trojan Horses are constrained by the authorization for propagating access rights. The Trojan
Horse vulnerability of DAC does require that we assume the worst case regarding propagation of
access rights in a system. What we need therefore is a model, such as TAM, with strong safety
properties and broad expressive power.

In addition to balancing expressive power versus safety analysis, a useful model must also be
implementable. Our focus in this paper is on implementation considerations for TAM. It is possible
to implement TAM as defined in its full generality. However, such a full-blown implementation would
be cumbersome and awkward at best. In this paper we identify a simplified version of TAM called
Single-Object TAM (SO-TAM). SO-TAM is particularly suited for implementation in a distributed
environment. Moreover it retains most, if not all, of the expressive power of TAM. We provide
theoretical arguments to support this claim. We also demonstrate how SO-TAM can enforce the
ORCON policy for originator control of documents.

The rest of this paper is organized as follows. Section 2 provides a brief review of the TAM
model, following which SO-TAM is defined in Section 3. Section 4 expresses the ORCON policy
in SO-TAM. This is achieved by taking the ORCON solution of TAM [9], and manipulating it to
fit the requirements of SO-TAM. The basic architecture for implementing SO-TAM is discussed in
Section 5. Implementation and protocol details of SO-TAM are covered in Section 6. In Section 7
it is then shown how the ORCON example relates to the implementation. Section 8 gives our
conclusions.

2 THE TYPED ACCESS MATRIX MODEL

In this section we briefly review the typed access matrix (TAM) model. In a nutshell, TAM is
obtained by incorporating strong typing into the model of Harrison, Ruzzo and Ullman [5]. The
principal innovation of TAM is to introduce strong typing of subjects and objects. This innovation
is adapted from Sandhu's Schematic Protection Model [6].

As one would expect from its name, TAM represents the distribution of rights in the system
by an access matrix. The matrix has a row and a column for each subject and a column for each
object. Subjects are also considered to be objects. The [X, Y] cell contains rights which subject X
possesses for object Y.

Each subject or object is created to be of a specific type, which thereafter cannot be changed. It
is important to understand that the types and rights are specified as part of the system definition,
and are not predefined in the model. The security administrator specifies the following sets for this
purpose:

• a finite set of access rights denoted by R, and

• a finite set of object types (or simply types) denoted by T.

Once these sets are specified they remain fixed (until the security administrator3 changes their
3 It should be kept in mind that TAM treat! the security administrator as an external entity, rather than as another

222

definition). For example, T = {user, so, file} specifies there are three types, vis., user, security-
officer and file. A typical example of rights would be R — {r,w,e,o} respectively denoting read,
write, execute and own.

The protection state (or simply state) of a TAM system is given by the four-tuple (OBJ, SUB,t, AM)
interpreted as follows:

• OBJ is the set of objects.

• SUB is the set of subjects, SUB C OBJ.

• t : OBJ —• T, is the type function which gives the type of every object.

• AM is the access matrix, with a row for every subject and a column for every object. The
contents of the [S, O] cell of AM are denoted by AM[S, O]. We have AM[S, O] C R.

The rights in the access matrix cells serve two purposes. First, presence of a right, such as
r G AM[X, Y] may authorise JTto perform, say, the read operation on Y. Second, presence of
a right, say o € AM[X,Y] may authorise X to perform some operation which changes the access
matrix, e.g., by entering r in AM[Z,Y]. In other words, X as the owner of Y can change the matrix
so that Z can read Y.

The protection state of the system is changed by means of TAM commands. The security
administrator defines a finite set of TAM commands when the system is specified. Each TAM
command has the following format:

command a(Xi : t\, X2 : tj Xu : tk)
if rx G [JTf,, X0l] Arj£ [X„, X0,} A ... A rm € [Xtm, X.J
then opx; op?; ...;opn

end

or

command a(X\ : t\, X3 • t3, ..., Xk • tk)
opi; opj; ...;opn

end

Here a is the name of the command; Xi, X], ..., Jfj, are formal parameters whose types are
respectively tx, t3, tk; r^ r3, ..., rm are rights; and «lf s2, ..., sm and ou 03, ..., o„, are
integers between 1 and k. Each opi is one of the primitive operations discussed below. The predicate
following the if part of the command is called the condition of a, and the sequence of operations
°Pi! °Vi\ • • • i °Pn is called the body of a. If the condition is omitted the command is said to be an
unconditional command, otherwise it is said to be a conditional command.

A TAM command is invoked by substituting actual parameters of the appropriate types for
the formal parameters. The condition part of the command is evaluated with respect to its actual
parameters. The body is executed only if the condition evaluates to true.

There are six primitive operations in TAM as follows.

enter r into [X,, X0] delete r from [X,, X0]
create subject X, of type t, destroy subject X,
create object X0 of type t0 destroy object Xa

(a) Monotonic Primitive Operations (b) Non-Monotonic Primitive Operations

subject in the system.

223

We require that 5 and o are integeis between 1 and Jfc, where k is the number of parameters in the
TAM command in whose body the primitive operation occurs.

The enter operation enters a right r G R into an existing cell of the access matrix. The contents
of the cell are treated as a set for this purpose, i.e., if the right is already present the cell is not
changed. The enter operation is said to be monotonic because it only adds and does not remove
from the access matrix. The delete operation has the opposite effect of enter. It (possibly) removes
a right from a cell of the access matrix. Since each cell is treated as a set, delete has no effect if the
deleted right does not already exist in the cell. Because delete (potentially) removes a right from
the access matrix it is said to a non-monotonic operation.

The create subject and destroy subject operations make up a similar monotonic versus non-
monotonic pair. The create subject operation requires that the subject being created does not
previously exist. The destroy subject operation similarly requires that the subject being destroyed
should exist. Note that if the pre-condition for any create or destroy operation in the body is false,
the entire TAM command has no effect. The create subject operation introduces an empty row
and column for the newly created subject into the access matrix. The destroy subject operation
removes the row and column for the destroyed subject from the access matrix. The create object
and destroy object operations are much like their subject counterparts, except that they work on
a column-only basis.

To summarize, a system in specified in TAM by defining the following.

1. A set of rights R.

2. A set of types T.

3. A set of state-changing commands.

4. The initial state.

We say that the rights, types and commands define the system scheme. Note that once the system
scheme is specified by the security administrator it remains fixed thereafter for the life of the system.
The system state, however, changes with time.

3 SINGLE-OBJECT TAM

In this section we present a simplified version of TAM called Single-Object TAM (SO-TAM). Our
principal motivation in defining SO-TAM is to arrive at a model well-suited to a distributed im-
plementation. We, of course, do not wish to lose or compromise the expressive power of TAM in
doing so. We conjecture that SO-TAM is theoretically equivalent to TAM. Arguments in support
of this conjecture are given at the end of this section. The natural expressive power of SO-TAM is
demonstrated in the next section, where we show how the ORCON policy for originator control of
documents is specified in SO-TAM.

The principal restriction in SO-TAM is that all primitive operations in the body of a command
are required to operate on a single object. An object is represented as a column in the access matrix.
Similarly, when a subject is the "object" of an operation, that subject is viewed as a column in the
access matrix. SO-TAM stipulates that all operations in the body of a command are confined to a
single column.

Now consider the usual implementation of the access matrix by means of access control lists
(ACL's). Each object has an ACL associated with it, representing the information in the column
corresponding to that object in the access matrix. The restriction of SO-TAM implies that a single
command can modify the ACL of exactly one object. These modifications can therefore be done at
the single site where the object resides. This greatly simplifies the protocols for implementing the

224

commands. In particular, we do not need to be concerned about coordinating the completion of a
single command at multiple sites. There is therefore no need for a distributed two-phase commit for
SO-TAM commands.

Commands in SO-TAM are further categorized into the following two classes, depending upon
the single or multi-object nature of the condition part of the command.

• Class I: In these commands the condition part is also single object, i.e., the tests are confined
to the ACL of a single object. Unconditional SO-TAM commands also fall into this class. An
example of a Class I command is given below.

command a(Si : tlf O : t2, S3 : t3)
ifx <= [Si,0] then
enter z into [Sj, O]

end

• Class II: In these commands the condition part is multi-object, i.e., the tests require reference
to the ACL of more than one object. An example of a Class H command is given below.

command a(Si : ti, O : £3, 53 : £3)
ifx € [Si, O] Aye [Si, S3] then
enter z into [Si, O]

end

In Class I commands the condition and body of the command reference the ACL of a single object.
These commands can therefore be executed completely at the site where this single object resides.
In Class II commands evaluation of the condition part requires reference to the ACL's of several
objects. In general these objects can be located at different sites. Various pieces of the condition
will need to evaluated at different sites and then combined together. Class II commands therefore
require a more complex protocol than Class I commands. Implementation of Class I and Class
II commands is discussed in section 6.

Now let us consider the expressive power of SO-TAM. SO-TAM with Class I commands alone
is quite expressive by itself. In particular it subsumes the various transform models of [7, 10, 11].
SO-TAM with Class II has very strong expressive powers. As is shown in the next section it can
express the ORCON policy. Moreover SO-TAM can easily model the Extended Schematic Protection
Model (ESPM) [1, 2]. SO-TAM therefore inherits the theoretical expressive power of ESPM, which
is equivalence to the Harrison, Russo and Ullman (HRU) model [5] for the monotonic case (i.e., no
delete or destroy primitive operations). We conjecture that this equivalence of SO-TAM and HRU
will also extend to the non-monotonic case. Formal consideration of this matter is beyond the scope
of this paper. SO-TAM also inherits the practical expressive power of ESPM demonstrated in [1, 8].
It should be noted that the expressive power of SO-TAM is obtained without compromise on safety
analysis.

4 ORCON IN SO-TAM

In this section we demonstrate the expressive power of SO-TAM by specifying an ORCON (originator
control) policy [4]. In doing so we also show how multi-object TAM commands can be reduced to
single object operations. Specifically we first review the ORCON solution given in [9]. This solution
uses multi-object TAM commands. We then show how to construct equivalent SO-TAM commands.

ORCON requires that the creator (i.e., originator) of a document retains control over granting
access to the information in the document. For example, let Tom be the creator of an ORCON

225

Si : s Sj : s O :co

S\ : 5

Sj : s

own, read, write

(a) Subject Si creates an ORCON object O

Si : 1 Sj : 1 O : co

own, read, write
cread

Si : 3
Sj : 5

(b) Si gives 52 the cread (confined-read) right for O

Si : 3 Sa : 3 O : co Sa 53 : cs
own, read, write

cread
read

Si : 5

S3 : s

S3 : cs

(c) Sj, jointly with O, creates the confined subject S3 to read O

. Figure 1: Illustration of the ORCON Policy with multi-object TAM operations

document3 called SDL Suppose Tom authorizes Dick to read SDI. The ORCON policy requires that
Dick cannot propagate the information in SDI to, say, Harry; either directly by granting Harry read
access to SDI, or indirectly by granting Harry read access to a copy of SDI. The prohibition that
Dick cannot directly grant read access to Harry is straightforward to enforce. The real challenge for
the ORCON policy is how to prevent Dick from copying the information from SDI into some other
document, say, SDI-Copy and authorizing Harry to read SDI-Copy.4

The ORCON solution given in [9] is based on the ability in TAM to have multiple parents jointly
create a child subject.5 Figure 1(a) shows a fragment of the access matrix in which subject Si is
the creator (and therefore owner) of object O as indicated by own 6 [Si,0]. The notation Si : s
denotes that Si is of type s, and similarly for the names on the other rows and columns. The type
of O is co for confined object. In Figure 1(b), Si gives Sj the cread (i.e., confined-read) right for
O. This right allows Sj to create jointly with O subject S3 of type cs (for confined-subject). This
creation results in S3 getting the child right for S3 and O. By virtue of being the child of 52 and
O and S2 possessing the cread right, S3 obtains the read right for O. This results in the situation
shown in Figure 1(c). The scheme will ensure that S3, by virtue of its type being cs, will never be
able to write to any object or create any objects.

The definition of the TAM scheme for this ORCON solution is given below.

sAn ORCON document is one to which the ORCON policy applies as opposed to, say, ordinary documents to
which ORCON does not apply.

* Note that Dick as a human being is trusted not to divulge information from SDI to Harry without concurrence of
Tom. The problem here is to ensure that Trojan Horse laden subjects executing on behalf of Dick do not surreptitiously
leak the information in SDI to Harry.

6 The solution prohibits subjects spawned by Dick from making copies (or extracts) of SDI. The solution can be
extended to allow this with the stipulation that the copies (or extracts) will themselves be originator controlled by
Tom.

226

1. Rights R — {own, read, write, cread}

2. Types T = {*, cs, co}

3. The following TAM commands

(a) command create—orcon—object(5i : s,0 : co)
create object O of type co;
enter {own, read, write} in [Si,0]6

end

(b) command grant -confined—read(Si : s, Sj : s,0 : co)
if own € [Si, O] then enter cread in [Sj, O]

end

(c) command use—confined—read (Sj : s,0 : co, 53 : cs)
if cread 6 [Sj, O] then create subject S3 of type cs;

enter read in [53, O]
end

(d) command destroy—orcon—object(Si : s,0 : co)
if own € [Si,Oj then destroy object O

end

(e) command revoke—confined—read(Si : s,0 : co,Sj : s)
if own £ [Si, O] then delete cread from [S2, O]

end

(f) command revoke—read(Si : atO : co, S3 : cs)
if own £ [Si,0] A read £ [S3, O] then destroy subject S3

end

(g) command finish—orcon—read(S2 : s,0 : co, S3 : cs)
if cread 6 [Sj, O] A read G [S3, O] then destroy subject S3

end

Use of the first three commands is illustrated in Figure 1. The remaining commands are for revoca-
tion of rights and destruction of objects and subjects.

This scheme is not an SO-TAM scheme, because of command (c) which has multi-object opera-
tions. In command (c) subject S3 has to be created and the ACL of object O has to be modified.
In general, this requires the command to execute at two sites contrary to the constraints of SO-
TAM. All commands other than (c) are actually Class I commands, i.e., single-object condition
and operations.7

This scheme can be easily converted to SO-TAM. We do this by introducing a parent right.
Command (c) is replaced by the following two commands.

(c.l) command create—confined—subject(S2 : s,0 : co,S3 : cs)
create subject S3 of type cs;
enter parent in [S3,S3];
enter parent in [O, S3];

end

'Strictly speaking this should be written as three separate enter operations, one for each of the three rights being
entered.

7 One might question how destroy subject is a single site operation, since it requires removal of a row from the
access matrix potentially affecting a large number of ACL's. However, we don't need to purge these ACL's immediately
in an atomic manner.

227

(c.2) command get—read(5a : s,0 : co, S3 : cs)
if cread G [S3lO] A parent G [S2,S3] A parent G [OtS3]
then enter read in [53lO]

end

Figure 2 shows how the scenario of Figure 1 plays out with this modification. In the modified scheme
we enter the parent privilege during joint creation by command (c.l). Prior to grant of the read
privilege to 53 the condition in command (c.2) tests for the presence of the parent right. This simple
manipulation makes the entire scheme an SO-TAM scheme with single-object operations. Note that
command (c.l) is a Class I command while command (c.2) is a Class II command.

5 THE ARCHITECTURE

In this section we describe a client-server based architecture for implementing SO-TAM. This archi-
tecture has evolved from our earlier work [2, 10, 11].

5.1 Global Identifiers

Every subject and object is assigned a type when it gets created. The typing is strong and cannot
be altered thereafter. Moreover each subject or object in the system has a globally unique identifier
i.e., no two subjects or objects in a system can have the same identifiers. We assume the type of a
subject or object is embedded in its identifier. These identifiers have the following structure.

type identifier

The type field denotes the type of the subject or the object. The identifier field uniquely identifies
each subject or object among instances of the same type. Uniqueness of object identifiers reduces to
requiring each object to have a unique identifier among instances of the same type. If a particular
type is managed by more than one server, uniqueness of the identifier can be ensured by having the
following structure.

type server identifier identifier

Having made this point, we will use the former global identifier structure in rest of this paper.

5.2 Access Control Lists

Each object in the system is managed by an object server. When the object is a subject, we
sometimes call the server a subject server. Each server manages a particular type of object, but
the same type of object may be managed by several servers. For example, there may be several file
servers in the system. Each object resides at exactly one server.

Each object has an Access Control List (ACL) associated with it. The ACL has the following
structure.

oid

sidl
sid2

sidn

rights
rights

rights

228

Si : s S3 : s O-.co
Si : 3
S2 : 3
O-.co

own, read, write

(a) Subject Sx creates an ORCON object O

Si : 3 S3 : 3 O : co
own, read, write

cread
Si : 3
S3 : 3
O :co

(b) Si gives S2 the cread (confined-read) right for O

Si : 3 Sj : 3 O : co S3 : cs
Si : 3
Sa : 3
O : co
S3 : cs

own, read, write
cread parent

parent

(c) Sj, jointly with O, creates the confined subject S3

Si : 5 S3 : 3 O :co S3 : cs
Si : s
S3 : s
O :co
S3 : cs

own, read, write
cread parent

parent
read

(d) S3 acquires read right for O

Figure 2: Illustration of the ORCON Policy in SO-TAM

229

To make the construction of the architecture clear we refer to a subject identifier by sid and a object
identifier by oid.

Any access to an object is determined by the rights specified in the ACL for that subject.
Similarly all accesses to subjects are dictated by the rights in the ACL possessed by the requesting
subject. The ACL's are dynamic in nature and can be manipulated by SO-TAM commands.

5.3 Certificates

In addition each server is associated with a certificate server. The certificate server acts as a mediator
for any form of communication between two servers. The certificate server is responsible for creating,
encrypting and decrypting certificates for the servers to which it is associated. The certificate
generated by a certificate server has the following structure.

oid Rights sid

The oid contains the unique identifier for the object in question. The sid is the unique identifier of
the subject. The rights field specifies the rights that the subject identified in the sid field has for
the object in the oid field.

Since these certificates travel over insecure lines they are made secure by using a public key based
encryption algorithm. For this we specify a pair of keys for each server. Out of this pair one of
the keys is secret known only to that server's certificate server, while the other one is public and
known to all certificate servers. Certificates are doubly encrypted in the usual manner in public-key
systems, to ensure their authenticity and confidentiality. They are also time-stamped to avoid replay
attacks. Further details are given in the next section. Authentication between users and their servers
is assumed. Any authentication protocol from the literature [3] can be employed for this purpose.

6 IMPLEMENTATION OF SO-TAM

The implementation of SO-TAM commands is based on the architecture described in the previous
section. All accesses to an object are mediated by the object server responsible for managing that
object. Similarly for subject accesses the subject server responsible for that subject mediates the
access.

Authentication is also carried out at the time of object/subject access, and must be incorporated
into the RPC (Remote Procedure Call) mechanism of the client-server architecture. The servers
must authenticate the source of every RPC request. This can be achieved by any of the encryption
protocols found in literature [3]. One method would be to provide means for every subject to place
its digital signature on every RPC communication to a server. Digital signatures for the reverse
communication from object/subject servers to clients can also be incorporated.

We now describe the execution of a primitive operation at a server, followed by protocols for
Class I and Class II commands.

6.1 Primitive Operations

Let us consider each of the primitive operations in turn.

1. enter x into [Si, O]

In this operation the server managing object O enters the x right for subject 5j into the ACL
for object O.

230

2. delete x from \SuO}

For this operation the server managing object O deletes the x right that S\ has from O's ACL.
This operation is exactly the opposite of the enter operation.

3. create subject S\ of type t\

The server who will manage subject Si creates Si with an empty ACL.

4. destroy subject Si

The server managing Si destroys the subject Si and discards Si's ACL.

5. create object O of type t2

The server who will manage object O creates object O with an empty ACL.

6. destroy object O

The server managing O destroys the object O and discards O's ACL.

6.2 Class I Commands

For an unconditional command the server in question simply executes the primitive operations in
the body as indicated above. The operations of conditional Class I commands are executed only
if the specified condition is satisfied. In Class I commands the if condition can be tested by the
server who manages the object in question, simply by reference to the object's ACL.

A typical command with single-object condition verification is shown below.

command a(Si : tlt O : t3)
ifx6[Si.O]
thenopi;opj;...;op„

end

This command is sent to the server where the listed operations opl; op?;...; opn are to be executed.
The command is executed as follows.

1. (a) The server on receiving the request verifies the types of the subjects and objects against
the security policy to check the validity of the command. Once the validity is confirmed
the server tests the if conditional statement. If the command fails the validity tests the
request is aborted.

(b) The server checks the ACL for object O to see if Si really possesses the x privilege for O
and if so it executes the next step, otherwise the request is aborted.

(c) If the if condition is true the server performs the operations opi; op?; ...; op^.

6.3 Class II Commands

Verification of the condition in Class II commands requires reference to multiple sites. Our protocol
for multi-object condition verification is based on inter-server communications. Various pieces of the
condition as verified at individual servers and communicated to server A as certificates. Each server
has an associated certificate server to generate the certificate.

Consider the following typical example of multi-object verification of a conditional command.

command a(Si : t\, O : tj, S3 : 13)
ifx6[Si.O]Ay€ [Si,S3]
then opx\op2\...\opn

end

231

As specified by the constraints of SO-TAM all the operations opijopa;... ;opn involve only one
server. Let us say this is the server for object O and is called server A. In the above command
verification of the condition part involves only one additional site, viz., the site of S3's server. Let
us call S3's server as server B. The protocol is easily extended to additional sites.

In this command, to verify the conditional if statement, server A needs information from the
subject server managing subject 53 as to whether or not Si possesses the y right for 53. This is
achieved as follows.

1. (a) Server A checks the security policy to determine the validity of the request. If the validity
tests fail the request is aborted.

(b) Server A checks O'a ACL to see whether Si possesses the x right for O. If Si does indeed
possess x for O the command proceeds, otherwise it is aborted.

(c) Server A further needs information from the subject server managing subject S3 as to
whether or not S\ has the y right for S3, so A waits for a certificate from S3*s server. (To
prevent A from waiting indefinitely for the certificate to arrive, it waits for a specified
period of time and then aborts the command.)

2. (a) Server B, i.e., Ss's server, checks into Ss's ACL to ascertain whether Si possesses the y
right for S3. If this is so, B informs B's certificate server to create a certificate and send
it to server A. Otherwise server A is notified of a failed condition.

(b) B's certificate server encrypts the certificate with its own secret key. Then the certificate
is again encrypted with the public key of the A's certificate server. The certificate is
shown below.

(I S3 : t3 I y I Si : ti I TS 1 K*)K?

where K% is the secret key of B (known only to B's certificate server), Kf is the public
encryption key of A (known to all certificate servers) and TS is a timestamp.

3. (a) When A's certificate server receives the certificate it decodes it in two steps. First it
applies A's secret key K*, and it applies B's public key Kf. If decryption fails or the
timestamp is out of date the request is aborted.

(b) If the certificate is decoded correctly the information it holds is in the clear and server A
has the necessary verification it needs to process the command request.

(c) If the condition is met server A executes the requested operations opi; opj; ...; opn.

7 IMPLEMENTATION OF ORCON

In this section we give a concrete example of the abstract implementation of section 6 by showing
how the ORCON policy of section 4 is enforced.

1. Let Tom be a subject of type s who initiates the following command to create the ORCON
object SDI of type co.

command create—orcon—object(Tom : s, SDI: co)

The kernel of Tom's host, makes a remote procedure call (RPC) to the object server which
is responsible for managing ORCON objects created by Tom. This RPC contains the action
requested, the sid and oid; all signed under Tom's digital signature. In this instance, the sid
= s.Tom and the oid = co.O.

232

2. On receiving the request the object server authenticates the request originating from Tom. The
server then checks the command create—orcon—object with respect to its actual parameters
to determine its validity. Once the command is determined to be valid, the object server
proceeds to create a new ORCON object SDI with the ACL shown below.

co.SDI | s.Tom own,read,write

The ACL shows Tom to be the owner of the document SDI and possessing own, read and write
privileges for it.

3. In this step Tom grants cread (confined read) privilege to Dick (sid = s.Dick). The command
is sent to SDI's object server. The request is shown below.

command grant—confined—read(Tom : 3, Dick : s,SDI : co)

The server on receiving the RPC authenticates its origin as Tom. Then it performs the validity
checks on the request by checking the sids and oids of the subjects and objects involved in the
operation. The server then evaluates the condition part of the command. The server looks
into SDI's ACL to see if Tom is the owner of SDI. With this fact confirmed, the if condition
evaluates to true and the server enters cread privilege for Dick into the ACL, as shown below.

co.SDI

With this Dick possesses the cread privilege for the confined-object SDI.

4. Now Dick and the object SDI jointly create a new subject Dick' which is of the type confined-
subject (cs). The command shown below is sent to the appropriate subject server.

command create—confined—subject(Dicifc : 5, SDI : co, Dick' : cs)

The subject server on receiving the request authenticates the sender and tests the sids and
oids of the subjects and objects involved to determine the validity of the request. Since this
is an unconditional command, the subject server proceeds to create a new subject Dick' with
the ACL shown below.

s.Tom
s.Dick

own.read,write
cread

cs.Dick'
s.Dick
co.SDI

parent
parent

5. Next the read right is obtained by Dick' via the following command. This command is sent to
the object server managing SDI.

command get—read(Dicjfc : a, SDI : co, Dick' : cs)

Like before the object server makes the authentication and validity tests. Then it checks into
its ACL to determine whether Dick possesses the cread privilege for SDI. This information
completes one part of the if statement. For the other part it relies on information from the
subject server managing Dick'.

6. The subject server for Dick' checks into its ACL to determine whether Dick and SDI are
parents of Dick'. Since this is the case, the server informs its certificate server which frames
two certificates, shown below, to be sent to SDI's object server.

233

(I s.Dick | parent | cs.Dick' | TS | Kf)K?

(| co.SDI 1 parent [cs.Dick7 | TS | Kf)K*

where the Kf is the secret key of the subject seivei for Dick' and K* is the public encryption
key of the object server for SDI. Recall that TS is a timestamp.

7. The certificate server for SDI's object server first applies its secret key Kf and then the public
key Kf of the certificate server for the subject server. Now the certificates are in the clear as
shown below.

s.Dick parent cs.Dick

co.SDI parent cs.Dick'

Now SDI's object server has complete information to evaluate the condition part of the com-
mand. Since the condition evaluates to be true, the server updates the ACL by adding the
read right for Dick' for the ORCON object SDI.

co.SDI s.Tom
cs.Dick'

own,read,write
read

Now Dick' can read SDI but cannot copy it or pass it to another subject (due to Dick' being
a confined subject).

8. Now suppose Tom wants to revoke the read access to Dick'. To do this he issues the following
command.

command revoke—read(Tom : *, SDI : co, Dick' : cs)

The object server for SDI authenticates the command and performs the regular validity tests
on the command. With validity of the command confirmed the server checks SDI's ACL to see
whether Tom is the owner of SDI and whether Dick' has the read privilege for it. Since this is
true, the server deletes the read privilege for Dick' for SDI. The purged ACL is shown below.

co.SDI
s.Tom
cs.Dick'

own,read,write

Since the read privilege is deleted from the ACL all future accesses by Dick' to read SDI are
denied.

This completes the example.

8 CONCLUSION

In this paper we have considered implementation of the Typed Access Matrix (TAM) model, recently
defined by Sandhu [9]. TAM has rich expressive power and yet has strong safety properties. We
have defined a simplified version of TAM called Single-Object TAM (SO-TAM). We have shown
that SO-TAM has a particularly simple and efficient implementation in a distributed environment.
This paper demonstrates how the ORCON policy can be expressed in SO-TAM and implemented in

234

the architecture. We conjecture that SO-TAM haa the same expressive power as TAM. Theoretical
arguments in support of this conjecture have been provided.

The implementation is based on an architecture which makes use of both access control lists
and certificates. All accesses to subjects and objects are mediated by subject and object servers
respectively. Access control lists are used for this purpose. Each server in addition has a certificate
server under its domain. The certificate server has the function of creating and decrypting certificates
used for communications between servers over a potentially hostile network.

References

[1] Ammann, P.E. and Sandhu, R.S. "The Extended Schematic Protection Model." Journal of
Computer Security, to appear.

[2] Ammann, P.E., Sandhu, R.S. and Suri, G.S. "A Distributed Implementation of the Extended
Schematic Protection Model." Seventh Annual Computer Security Applications Conference,
1991, pages 152-164.

[3] Davies, D.W. and Price, W.L. Security in Computer Networks. John Wiley k Sons (1989).

[4] Director of Central Intelligence Directive No. 1/7 "Control of Dissemination of Intelligence
Information," 4 May 1981.

[5] Harrison, M.H., Runo, W.L. and Ullman, J.D. "Protection in Operating Systems." Communi-
cations of ACM 19(8), 1976, pages 461-471.

[6] Sandhu, R.S. "The Schematic Protection Model: Its Definition and Analysis for Acyclic Atten-
uating Schemes." Journal of ACM 35(2), 1988, pages 404-432.

[7] Sandhu, R.S. "Transformation of Access Rights." Proc. IEEE Symposium on Security and Pri-
vacy, Oakland, California, May 1989, pages 259-268.

[8] Sandhu, R.S. "Expressive Power of the The Schematic Protection Model." Journal of Computer
Security, Volume 1, Number 1, 1992, pages 59-98.

[9] Sandhu, R.S. "The Typed Access Matrix Model" IEEE Symposium on Research in Security
and Privacy, Oakland, CA. 1992, pages 122-136.

[10] Sandhu, R.S. and Suri, G.S. "A Distributed Implementation of the Transform Model" 14th
National Computer Security Conference, Washington, DC, October 1991, pages 177-187.

[11] Sandhu, R.S. and Suri, G.S. "Non-Monotonic Transformation of Access Rights" IEEE Sympo-
sium on Research in Security and Privacy, Oakland, CA. 1992, pages 148-161.

235

IMPLICATIONS OF MONOINSTANTIATION IN A NORMALLY
POLYINSTANTIATED MULTILEVEL SECURE DATABASE

Frank E. Kramer

Steven M. Heffern

MLS GDSS PROGRAM

Digitial Equipment Corporation

721 Emerson Rd. P.O. Box 227320

St. Louis, MO

Keywords: Polyinstantiation, Multilevel Security, Relational Database

Point of Contact: Frank E. Kramer (314) 991-6268

Abstract

The intentional use of polyinstantiation within the context of a relational database model is a
useful mechanism for the incorporation of data entered at differing security levels into a single
multi-level relational database. However, there may be some data entities in a given application
where the polyinstantiation of that data entity could be in conflict with operational requirements
and must be relaxed. In these cases, the monoinstantiation of of that data entity may be man-
dated in an otherwise polyinstantiated database. Within the MLS Global Decision Support Sys-
tem (MLS/GDSS) system being constructed for the United States Transportation Command/Air
Mobility Command (USTRANSCOM/AMC), the treatment of textual remarks calls for such a
monoinstantiation due to the operational requirement that remarks at all security levels domi-
nated by the user's security level be made available and immediately viewable to the user. For
most of this application, field-level labelling is accomplished by the collapsing of
polyinstantiated tuples into a multilevel tuple for presentation to the user interface. This allows
the user to view the highest level version of that data for which he is cleared. For textual re-
marks, each remark, regardless of security level, is considered important and should not be
overlayed by information at a higher security level.. Each remark in the database must then be
given a unique key value such that a polyinstantiation will not occur when it is stored in the
database. The implications of this monoinstantiation and the special procedures required in the
determination of system-generated database keys for these data are discussed.

236

Introduction

The Air Mobility Command (AMC, formerly the Military Airlift Command) uses the Global
Decision Support System (GDSS) for planning, allocating, scheduling, and controlling the na-
tion's airlift capabilities to support Department of Defense requirements. The Command and
Control Multi-Level Security Program (C2 MLSP) was initiated to demonstrate the operational
capabilities produced when applying Multi-Level Secure technology to the existing GDSS sys-
tem.

Digital Equiment Corporation is the system integrator responsible for re-hosting the GDSS sys-
tem to a Multilevel Secure system certifiable to security class Bl or better (NCSC Orange
Book) using commercial off-the-shelf (COTS) products. The retro-fitted system, MLS/GDSS,
is capable of supporting UNCLASSIFIED1 through SECRET information. Among AMC's re-
quirements for this system are:

1. All information at all security levels (UNCLASSIFIED through SECRET) will be stored in
a single database. Controlled access to information contained in this database must be en-
forced by the TCB and its extensions and is determined by the user's clearance level.

2. MLS/GDSS will support the concept of cover stories for classified information.

3. MLS/GDSS will retain the 'look and feel' of the existing, single-level GDSS in order to
reuse existing software to the greatest extent and to minimize the retraining of personnel.

4. Sensitivity labels must be applied at the data element (field) level. Current MLS COTS
DBMSs label data at the tuple level and not at the data-element level. Therefore, the TCB
was extended to include the means to label individual data items in a composite tuple pre-
sented to the application.

5. Sensitivity labels of displayed data must be available for display. Users must be able to
view readily the sensitivity labels of all displayed data items in order to determine whether
that data may or may not be disclosed.

It was discovered during the design and implementation of MLS/GDSS that the model used for
the data architecture [1], when viewed in the light of user requirements, was insufficient to
process and maintain certain types of information.

It must be stressed that the design for this system is driven, to a great degree, by item 3, above.
The users of the application were, for the most part, flexible in their acceptance of the con-
straints imposed with the re-hosting of the system for multilevel security. However, changes in
functionality that would result in changes to the business rules for operations were carefully

In the context of this report, the term "unclassified" is synonomous with Sensitive Unclassified. The term "un-
cleared user" is a user who has no clearance and is authorized access to only Sensitive Unclassified data. A
"cleared user" is one who is cleared to view information classified up to the Secret level. The term "low" refers
to the Sensitive Unclassified sensitivity level. The term "high" refers to the Secret sensitivity level. The letter
"U" is the abbreviation for Sensitive Unclassified data. The letter "S" is the abbreviation for Secret data.

237

weighed against the risks associated with maintaining the functionality of the current, single
level, system. In many instances, these risks were determined to be more acceptable than the
functional changes that would result from the removal of those risks.

Polyinstantiation

A polyinstantiated database is a database that can contain tuples containing the same primary
key information, but holding different versions of non-key data at different sensitivity levels .
The use of a polyinstantiated data architecture is recommended whenever a logical tuple must
contain data with differing sensitivities, i.e. tuples with field-level labeling. With MLS/GDSS,
all database tuples contain some fields that are never classified and are necessary for AMC per-
sonnel operating at UNCLASSIFIED security levels to function. Because all currently released
COTS MLS DBMSs label information at the tuple level, it is necessary to generate a multilevel
tuple from a collection of single level tuples for persentation to the user. It was determined
that the most efficient means for providing this capability was a database design involving in-
tentional polyinstantiation wherby an existing UNCLASSIFIED tuple is polyinstantiated at a
higher level whenever one or more data items within that tuple become classified f 1].

Polyinstantiation is also utilized in order to enable the generation and storage of cover story in-
formation to be presented to the uncleared user. In this context, a cover story is a version of
information presented to the uncleared user that hides the existence of classified information,
thus preventing unwanted inferences. For example, uncleared flight line personnel need to
know the true location and time of an arriving flight in order to service that flight. These data
items may not be classified or even classifiable. But these personnel do not need to know cargo
and passenger details or the intended departure destination. If the latter data items are classi-
fied, cover stories serve to conceal these details and prevent the inference of the existence of a
classified version of the information. The creation of UNCLASSIFIED tuples with cover sto-
ries for these data, and SECRET tuples containing the actual information, with both tuples hav-
ing the same key field data, defines the polyinstantiation.

In the MLS/GDSS effort, the UNCLASSIFED tuple is stored in the database first, and serves as
the base record for information that may be entered at higher sensitivity levels. Users logged in
to a SECRET session may then modifiy values in these tuples. These modifications cause the
tuples to be polyinstantiated at the SECRET level if existing tuples do not already exist at that
level. When the SECRET user reads this information, the system collapses the polyinstantiated
tuples and overwrites the UNCLASSIFIED information with the SECRET information, thus
presenting a multilevel tuple for display.

Obviously then, the use of polyinstantiation enables the modification of lower sensitivity level
data with information at a higher sensitivity level while maintaining the lower level data for ac-
cess by the uncleared user. Implicit in this is the assumption that information with the higher
sensitivity also has higher integrity.

Monoinstantiation of User Remarks

There are, however, data for which the level of integrity is considered to be the same for multi-
ple levels of security. In these cases, the more sensitive information is considered to be either

238

an extension to or conceptually separate from the lower sensitivity information. As a result,
polyinstantiation and the subsequent collapse of data should be considered invalid because the
information at the lower sensitivity level should not be overwritten (as by the collapsing mecha-
nism) by data at the higher level.

In the MLS/GDSS effort, this situation occurs with textual remarks entered by users. The AMC
has mandated that textual remarks not be collapsed in the MLS/GDSS system in order that a
user be able to view, simultaneously, all related remarks stored in the database, not only at his
current process security level, but those stored at lower levels as well. This means that a remark
field cannot be stored as a field in a polyinstantiated tuple, which may be overwritten by higher
sensitivity information when the tuple is read and a multilevel tuple is constructed. It must be
stored in a separate REMARKS table which is mono-instantiated (polyinstantiation has been
turned off) and, therefore, will not be subject to collapse. The polyinstantiated database record
where the remark would normally be stored is referred to as the "parent record" for the RE-
MARKS table tuple.

The monoinstantiation of remarks has an important effect on functionality and user friendliness.
Without polyinstantiation, updates to a tuple take the form of replacement rather than annexa-
tion. This replacement is different from the overwriting that occurs in the collapse of
polyinstantiated tuples; with collapse, only those fields that contain higher sensitivity data are
overwritten, whereas with replacement, all fields are effectively overwritten due to the rise in
sensitivity label for the entire tuple. In the case of remarks, if a user logged in at a SECRET
level modifies an UNCLASSIFIED remark, the subsequently stored remark will replace the ex-
isting UNCLASSIFIED remark and the sensitivity label will rise to SECRET. The remark re-
cord will then be unavailable to the UNCLASSIFIED user. In some parts of an application, this
would be the desired result, while in others the operational functionality must be modified to
disallow editing of a remark which has a sensitivity label different from that of the level of the
user's process.

There are several other characteristics of remarks data, driven by AMC user requirements, that
mandate special handling characteristics. It would perhaps be instructive to describe these by
way of an example taken from the current, single level, GDSS system. Figure 1 shows a part of
a GDSS screen form which displays both scheduled and actual arrival and departure informa-
tion for the AMC mission A AM 183602192, as well as any remarks which were made pertain-
ing to events occurring during the mission. Briefly, the columns in the schedule data portion of
the form have the following meanings:

• MISSION NBR - Mission number designation.

CT - Crew type

• ICAO - Four character airfield identifier

C - Purpose code

STA - Status code, either arrival or departure.

TIME, ATA/D - Scheduled and actual time for the event in Julian-day/24-hour-time format.

RM - Remark sequence number. Points to remarks sequence at bottom of form.

A - Advisory reason code

•

•

•

•

239

• D - Delay reason code

• DLY - Delay time

• TAIL# - Aircraft assigned to mission

• ADD - Additional crew flag.

Each line in the schedule data portion corrresponds to an event. The events shown in Fig. 1 are
scheduled arrival (ARR), scheduled departure (DEP), arrival at diverted (unscheduled) airfield
(ADV) and departure from diverted airfield (DDV). For six of these events, remarks that were
entered by flight controllers describe or explain some details associated with those events, and
for a particular remark, the corresponding database EVENTS record is the parent record for that
remark.

The value in the RM column for a particular event in the schedule data portion of the form iden-
tifies the sequence number for the remark or remarks entered for that event. This number re-
flects the chronological order in which an event was first associated with a remark, and is dis-
played as the integer portion of the number preceeding each remark. It may be seen in Fig. 1
that for those events with remark sequence numbers 2 and 5, there is more than one remark as-
sociated. These remarks are "sibling remarks" and are differentiated chronologically by the
number following the decimal, the secondary sequence number. This secondary sequence num-
ber will be incremented with each new remark generated for a particular event, with the excep-
tion of the actual arrival or departure controller's remark, which is always given the secondary
sequence number of zero. In order to maintain database integrity, the sequence identifier, con-
sisting of the sequence number and secondary sequence number, along with parent record infor-
mation are stored as key fields in the REMARKS tuple containing the text of the remark.

Users of the GDSS system have specified three requirements specific to these sequence identifi-
ers:

1. They must be chronologically relevant. The primary sequence numbers for remarks associ-
ated with events must reflect the order in which the first remark for an event was entered.
Secondary sequence numbers must reflect the order in which remarks were entered within
an event, with the exception of arrival/departure controller's remarks which are always zero.

2. They must be constant in time. These numbers are used for internal communications by
AMC personnel in referring to specific remarks. They cannot increment due subsequent up-
date of the remark or decrement by the deletion of preceeding remarks.

3. They must remain constant across security levels. These numbers are used by AMC per-
sonnel in communicating with each other. The sequence/secondary sequence composite
must be the same for a particular remark regardless of the user's session security level.

The above requirements then dictate that remark sequence identifiers must be strictly coupled
with the remark text, and so cannot be determined at run-time and must be associated with the
remark record in the database at the time of commitment. Because the user operating at an UN-
CLASSED security level does not have read-access to those remarks and associated sequence
identifiers that are CLASSIFIED, the sequence identifiers cannot be assigned interactively by
the user if database integrity is to be maintained, and must, therefore, be generated automati-

240

cally by the system whenever a new remark is committed to the database. It is in this genera-
tion that data integrity and system security are in opposition.

Existence Checking and Trusted Read-Up Capability

Whenever a new remark is committed to the database, a sequence identifier for that remark,
used as part of the database key, must be determined by the system on behalf of the user. Be-
cause of AMC user requirements, as outlined above, and the monoinstantiated nature of the RE-
MARKS table, the sequence identifier must be unique with respect to a given parent record and
must reflect the relative time of entry for the remark. In order for the new sequence identifier
to be calculated properly by the system, any process committing a remark to the database must
have access to the sequence identifiers for all remark records which are related to the commit-
ting remark, regardless of sensitivity level.

To achieve this functionality, a trusted procedure was developed to perform a very specific
read-up function. This procedure temporarily gives the user process read capabilities at system
high on the REMARKS table. This procedure is necessary for the obtention of all remark
unique sequence numbers for a given parent record, and the calculation of the system-generated
key values for the new remark [2]. The function returns an integer which represents the highest
sequence number or secondary sequence number found in the returned remarks records. This
function cannot query any records other than those in the REMARKS table and it does not re-
turn, or make available, any textual remark information to the untrusted application. The appli-
cation then uses this integer to determine the proper sequence identifier for the new remark
prior to storage in the database.

Covert and Inference Channels

It is recognized that the above procedure produces a mechanism whereby a covert channel may
be exploited. In addition, because the sequence identifiers for a remark are unique for a parent
record, regardless of sensitivity level, it is possible for the UNCLASSIFIED user to infer that
CLASSIFIED remarks might exist for that parent record when he observes "gaps" in the se-
quence identifiers on the screen form. This inference channel is significantly narrowed by the
fact that remarks are routinely deleted, so providing gaps within a sensitivity level. This is il-
lustrated in Fig. 1 where there is a gap between unclassified remarks 2.1 and 2.3 caused by the
deleteion of remark 2.2 . Thus, a gap in sequence does not necessarily imply the existance of
higher-level data, but may simply reflect the deletion of data from the database. The introduc-
tion of this risk was deemed acceptable by the AMC when weighed against the business rule
changes that would be forced were this mechanism not in place.

Summary

The use of moninstantiation in a normally polyinstantiated database can serve a useful function
if information classified at lower levels is not intended to be replaced by information classified
a higher levels, but is considered to be of equal integrity and should not be hidden from the user
at a higher classification.

241

References

11] Doncaster, S., Endsley, M., and Factor, G. 1990. "Rehosting Existing Command and Con-
trol Systems Into a Multilevel Secure Environment". Proc. Sixth Annual Computer Security
Conference. Tucson, Arizona

[2] Nelson, D. and Paradise, C. 1991. "Using Polyinstantiation to Develop an MLS Applica-
tion". Proc. Seventh Annual Computer Security Conference. San Antonio, Texas.

242

=============SCHEDULE=============

MISSION NBR CT ICAO C STA TIME RM A D DLY TAIL* ICAO C ATA/D ADD

AAM183602192

AAM183602192

AAM183602192

AAM183602192

AAM183602192

AAM183602192

KCHS P DEP 192/1800 1 70014 KCHS P 192/1723

KSSC P ARR 192/1830 KSSC P 192/1755

KSSC 0 DEP 193/1200 70014 KSSC 0 193/1203
YAR1 R ARR 193/1345 3 *

YAR1 R DEP 193/1445 2 *

EDAF C ARR 193/2115 EDAF c 193/2204
EDAF R DEP 194/1730 70014 EDAF R 194/2033

KBGR R ARR 195/0155 4 *

KBGR R DEP 194/0410 *

ADV 5 KWRI K 195/0615
DDV 70014 KWRI K 195/0900

KSSC U ARR 195/0655 6 KSSC U 195/0900

=================================== REMARKS ===============================

6.1 MISSION WILL OPERATE ON A PERMIT TO PROCEED FROM KWRI; NEEDS CUSTOMS AND
AG AT KSSC. ROUGH ETA KSSC WILL BE 195/0800Z. KWRI/PALMER. KSSC/HESS,
: WRI/RAGAN 195/0630

5.2 RETRANS FOR IPS: WRI/FULLAN 195/0542 : WRI WELLIS 195/0546
5.1 DVRT DUE TO LACK OF CREW DUTY DAY TO CONTINUE TO KSSC. ADVISED

KWRI/FULLEN
OF DVRT AND REQUEST CUSTOMS, AG, AND IMMIGRATION. : WRI/MCCALL 195/0431

5.0 106 ENROUTE WINDS REQ FUEL: WRI/WELLIS 195/0558
4.0 OVERFLY DUE TO THUNDERSTORM ACTIVITY. ACFT WILL DVRT TO KWRI FOR FUEL

AND
WILL RON DUE TO LACK OF CREW DUTY DAY TO CONTINUE TO KSSC : WRI/MCCALL
195/0429

2.3 AR COMPLETE ON LOAD 41K. MAC/ANDERSON : WRI/HARVEY 193/1716
2.1 TALKED TO ACFT. ACFT STATES HE WILL BE APPROX 10 MIN LACT TO ARCT,

KPSM-157ARG, AMN CUMMINGS NOTIFIED : WRI HARVEY 193/1312
3.0 AR : RMS/WESTON 194/2232
1.1 EARLY ARRIVAL AT KSSC APPROVED PER "AH" : HRT/KCHS MORROW 192/1412

Figure 1. Example GDSS screen form showing flight schedule data and event remarks.

243

INFORMATION SYSTEM SECURITY ENGINEERING:
CORNERSTONE TO THE FUTURE

Dr. Donald M. Howe
National Security Agency

Fort George G. Meade, Maryland 20755-6000
(410) 684-7295

Abstract
This paper describes current work toward identifying and practicing a system security
engineering methodology. Significant results and accomplishments are discussed
based on experiences during the formative stages of this work. The work can be
characterized as an attempt to provide the cornerstone methodology that will serve as a
structured building block to the future. One of the primary objectives is to incorporate
evaluation considerations at an early system development stage to reduce risk.

Keywords: security engineering, systems, evaluation

1. Introduction

Secure information processing and telecommunications system requirements are
increasing throughout society. As intrinsic faults, viruses, worms and other success-
ful malicious attempts become more serious and evident, there could be an exponen-
tial increase in the demand for security (with emphasis on integrity) for our informa-
tion systems. Unfortunately, there is no known way to insure security, especially in
distributed systems, unless every detail of performance and potential access is known
and effective countermeasures are rigorously instituted and observed.

A dilemma faced today is the amount of evaluation resources necessary to verify
the level of security provided by each component of a system. That dilemma is com-
pounded by an imprecise notion of the consequences of combining trusted components
into a system, and further complicated by the introduction of untrusted components.
This leads to the conclusion that it is too difficult to build a truly secure system, or
alternatively, that it will take forever to identify what is not known about the poten-
tial faults. When faced with this ominous conclusion, conventional wisdom indicates
that one should identify tradeoffs based on what we do know and attempt to quantify
expectations and limitations. The methodology for identifying and practicing secure
information system composition and evaluation is broadly defined in this paper to be
security engineering.

Security engineering is intended to be precise in that it is a structured approach to
composing and evaluating systems based on what we have learned through experi-
ence, that is, it is empirically based (as is any true engineering approach). Theories
become evident as a result of the coalescing of the appropriate experiences, but the
theory, fortunately or unfortunately, does not come first. This paper summarizes the
findings, to date, of an intense growth, currently embryonic, effort that is directed
toward quantitatively structuring secure information system composition and
evaluation. The effort is expected to be a continuing evolutionary process, with
reporting and feed-back plateaus, represent! ng specific building blocks to the future.

244

The pivotal principle in system security engineering is the adherence to standards
and criteria published by credible organizations after comprehensive review. For
example, the absence of a standard for interfaces involving security headers or labels
between two components of a system will likely result in a unique software or hard-
ware conversion/patch that could potentially be the source of a security fault. In some
cases standards can provide consistent opportunities to exploit security faults. In
general, however, it appears that there is less overall vulnerability if standards are
followed.

TIIRKAT

TOP-DOWN
DKCOMPOSI'I
ION

KXPKKIKNCK

PROCKSS

DillII Store

1*1 IKIVICL

Symbol Key

CONCKPI-OK
OPERATIONS

ARCHITECTURE

SPECIFICATION

KAliUICATION AND
INTEGRATION

VALIDATION

OPERATION

Figure 1. Context Diagram for Security Engineering Principle

245

Other security engineering principles for the composition and evaluation of systems
are based on observations by experts. These include: 1.) security attribute identifi-
cation and incorporation facilitated through a top-down decomposition analysis, 2.)
maintenance of a working knowledge of related system experience within a frame-
work, 3.) adherence to a rigorous process, employing practical guidelines, incorpora-
ting extensive evaluation and feedback within all development stages 4.) employ-
ment of structured analysis tools to facilitate mission function requirements under-
standing and realization, together with security as an integral mission requirement
and 5.) formal proofs, to the extent practical. Figure 1. illustrates the security
engineering principles in a context diagram. This paper provides details of the
information system security engineering principles and identifies results based on
applications.

2. Background

In January 1992, the Washington Post reported that the Iraq Air Defense System
control screens were essentially rendered useless during Desert Storm by a system
component modification made during shipment. In mid 1991 telephone cable and
switch problems occurred in the Washington D.C., Los Angeles, Pittsburgh, and San
Francisco areas. On 15 January 1990. AT&T collapsed due to a flaw in the design of
the switch recovery algorithm. On 2-3 November 1988 the INTERNET worm was
released resulting in severe degradation. The Desert Storm case highlights the
potential security problems associated with uncontrolled distribution of hardware.
The three significant 1991 telephone problems were traced to: an untested code
patch, faulty signaling protocol implementation, and lack of alarm recognition. The
INTERNET worm exploited inherent weaknesses in system software passwords and
networking software.

These examples lead to the conclusion that disastrous consequences are possible if
a concerted attack is initiated to exploit vulnerabilities of software based systems.
Similarly, strategic advantage, tactical battles, and wars are won based on intelli-
gence obtained from information channels that appear secure. Perhaps more impor-
tantly, at least for the purpose of this paper, the examples illustrate that vulnera-
bilities can not be easily contained: every step from system concept formulation to
successful system operation can have a critical security fault. Information security is
a system problem.

System problems lead to an empr.asis on system solutions. The systems approach
relies on a working technical knowledge of component security and reliability vulner-
abilities, together with knowledge of methods to reduce the potential of a successful
threat in a specific application. Security must be viewed as an integrated attribute of
the overall system mission. The systems security engineering approach employs the
fundamentals of any successful project: good planning, thorough design, sound
implementation, reasonable verification, and sensible operation.

3. Security Engineering Principles.

3.1. Standards: Explicit agreement on the definition of criteria, key words, acronyms
and concepts is imperative for success. The Department of Defense Trusted Computer
System Evaluation Criteria. National Computer Security Center Trusted Network
Interpretation, and Air Force Trusted Critical Computer System Evaluation Criteria
are examples of publications that provide a common basis for implementation and

246

evaluation. In some cases, however, there are gaps in specific publications that result
in evaluation ambiguities. Ideally, criteria should be published in a way that is very
explicit, permitting self evaluation by the designer/developer (a lofty goal). Security
engineering has the responsibility (and challenge) to quantify known publication
gaps, that may be subject to interpretation, so that the designer and evaluator
recognize the tradeoffs inherent in specific component/system capability. References
[2]-[12] indicate the core publications and criteria for security engineering that
provides a common ground for designers and evaluators. Reference [1] provides a
comparison of the published and draft criteria, together with distributed system
applicability, gaps, and recommended extensions.

The development of a unified information system security criteria (INFOSEC
criteria that encompasses distributed multilevel security) is a necessary but perhaps
currently elusive goal because of the intrinsic complexity and technology available
for the foreseeable future. Technology and expectations of technology are advancing
very rapidly. Robust application of published (or credible draft/proposed) criteria and
standards, in a structured-engineering-tradeoff manner, may be the best approach at
the present time.

The National Security Agency (NSA) publishes a quarterly compilation of infor-
mation system security products and services. The publication [19] lists the NSA-
evaluated information systems security products and services that may be used to
protect information at several leveis of sensitivity. It is an essential working aid for
designers of systems having security needs.

The open publication and acceptance of hardware ana software security standards,
together with the respective evaluation criteria, is critical to the reduction, and hope-
fully elimination, of potential system security faults. There are security standards
published by the International Organization for Standardization (ISO), International
Telegraph and Telephone Consultative Committee (CCITT). and the Institute ot
Electronic and Electrical Engineers!IEEE). The most important standard is the ISO
Open Systems Interconnection Basic Reference Model Part 2. ISO 7498-2-1988 (E).
It contains detailed descriptions of security services, mechanisms and layers. The
ISO 7498-2 appendices provide background, policy information and justification for
security service and mechanism placement. Standards are required for interoperable
networking and security, and distributed security.

In addition to published definitions, criteria and standards there are specific
concepts, recognized by the computer security community, that form a basis for
design and evaluation. These concepts are the Bell and LaPadula [13] model for
multilevel security, and for integrity: the Biba [12] and Clark and Wilson [14]
models. The Reference Monitor Concept [2] and associated Security kernel are
important. Access control concepts including Type-enforcement [21] are also
important.

3.2. Top-Down System Architecture Decomposition: Within the Department of
Defense (DODh INFOrmation SECurity (INFOSEC) consists of an integrated concept
encapsulating communications, computer, transmission and operations security. The
goal of information system security engineering is to cost-effectively address all
aspects of INFOSEC.

Within the computer security community, the generally accepted attributes of
information security are the preservation of confidentiality, integrity and availa-
bility. Many believe that these three attributes are incomplete. Parker [15] proposed

247

the addition of utility (fitness for a purpose) and authenticity (conformance to fact)
attributes. Others have proposed the addition of accountability and assurance. The
Defense-Wide Information Systems Security Program (DISSP) [16] identified nine
system security architecture attributes (actually a mixture of attributes and
mechanisms) and two operational categories (interoperability and performance).

The DISSP system security attributes include: 1) Physical, Procedural and Per-
sonal Security, 2) Confidentiality, 3) Accountability, 4) Authentication. 5) Access
Control, 6) Integrity, 7) Nonrepudiation, 8) Availability, and 9) Assurance. These
security attributes, combined with the International Organization for Standardiza-
tion (ISO) communications layers and basic system elements provide a three-dimen-
sional matrix that is useful for characterizing systems. The DISSP framework (attri-
butes, definitions, and matrix layered components) has been successfully employed
for surveying and describing the security of five existing systems/programs and is
being used to analyze additional systems. The attributes are useful as a top level
information system security check-list to facilitate security policy preparation and
review. The framework has been successfully used for mapping existing system
policy, captured through the attributes, to implementation as system security
mechanisms. Efforts are being initiated to determine the usefulness of the
framework as an integral part of new system development.

3.3. Related System Knowledge: There is a wealth of experience available in the
development of systems that are identified as having a system high security
environment. Experiential knowledge of these systems has limited value for today
and tomorrow's problems. There is very little experience in distributed multilevel
secure network applications. Siil [20] provides one of the first experience based
results of the relatively new and unexplored territory of Multi-Level Secure (MLS)
networking. Siil describes the distributed auditing and label management issues,
together with lessons learned from experience, for porting AT&T's Bl rated system
V'MLS operating system to the AT&T 3B4000 super-minicomputer. The experience
indicates the feasibility of a specific MLS network application, without significant
performance degradation.

There have been unsuccessful secure distributed system attempts and there are a
few systems that are currently in the design stage (THETA, DTMach. and Secure
Alpha). Understanding the experiences and lessons learned from abandoned and
currently viable candidate systems provides a valuable knowledge base for system
security engineering. Rules for composing systems can be obtained from experience.

3.4 Process: A successful system is the result of hard work by motivated, knowledge-
able individuals The standard steps in the development process include: mission
identification, concept formulation, function specification, threat analysis, policy
definition, vulnerability and risk analysis, architecture selection, concept of opera-
tions preparation, design/specification, fabrication/production/integration, installa-
tion, accreditation, and operation. Guidelines are being prepared to facilitate the
incorporation of security into each step of the process. Security retrofits for systems
should follow the same process; the primary difference being addition or modification
vice comprehensive integration in the early stages of system development.

The ageless axioms of system development apply: 1.) it is cost-effective to recog-
nize problems and take corrective action early in the process; 2.) evaluation is an
intrinsic consideration in each step: 3.) communication, feed-back, correction, and
iteration are essential; 4.) attributes (e.g. security) are comprehensively integrated
into the overall mission and functions: 5.) management is committed.

248

Risk assessment, together with cost-benefit analyses, are pivotal to making intel-
ligent tradeoffs throughout the process. Weiss [18] describes a method to derive a
cost-effective system security architecture and integrate it into the system design
process. Efforts are currently underway to apply these and related concepts. Gather-
ing data for this type risk analysis can be somewhat overwnelming and tedious.
Unfortunately, there does not appear to be a better or easier way to confidently make
cost effective tradeoffs. The specific application and given constraints should be used
to determine the extent of the risk assessment effort to be undertaken.

3.5 Structured Analysis: This is an extremely useful technique for identifying the
details of system requirements in a structured, quantitative, manner. Products
include: context diagrams, data flow diagrams, data dictionaries, state transition
tables and other very useful definitive system material. Structured analysis can be
computer based or done using paper and pencil. There are several Computer Aided
Software/System Engineering (CASE) tools available. Each has an individual
advantage. Regardless of the tool selected (even paper and pencil), the benefits of
forced requirements definition employing common terms by all interested parties is
extremely valuable to the success of the initial stages of the process. Candidate
CASE tools are being evaluated at the present time.

3.6 Formal Methods: Applying formal methods to distributed systems appears to be
an abstract intellectual exercise at the current time. This does not. however, detract
from the need to find practical methods to apply formal evaluations to systems.
Research is continuing but it is unlikely to yield significant results in the near
future.

4. Applications

There are six pilot projects in various stages of development that are employing
part-, of the methodology described above. The first project is a major communi-
cations suppurt system. Security was incorporated in the early stages of mission
definition. Detailed security requirements are included in the overall statement of
mission requirements. A security policy has been written. Structured analysis, in-
cluding context diagrams, are being used. A risk analysis has been completed. The
next step is the selection of an architecture. Progress and results appear encour-
aging. The other projects are in earlier stages of development. Each project is
making reasonable progress.

5. Conclusions

This paper has presented a systems security engineering overview. The work is
an attempt to provide a development structure that incorporates evaluation consider-
ations at an early stage and continues throughout the development process. The
results from the embryonic stage of this effort are very encouraging.

249

Acknowledgement

This paper provided information system security engineering insights, together
with an overview of work currently underway in the Information System Security
Engineering Office at the National Security Agency. Many of the office personnel
have provided significant inputs. In particular, Bruce Bottomley, George Stephens.
Russell Flowers, Paul Boudra, Carl Cecere, Devolyn Arnold, Harold Staton, and Mike
Sheridan have made valuable contributions.

References

1. P.G. Neumann, N.E. Proctor, PREVENTING SECURITY MISUSE IN
DISTRIBUTED SYSTEMS. Prepared for Rome Laboratory under contract F30602-
90-C-0038, MARCH 20 1992.

2. POD, TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA.
Department of Defense Standard 5200.28-STD, December 26,1985.(Orange book)

3. NCSC, TRUSTED NETWORK INTERPRETATION (TNI). National
Computer Security Center, NCSC-TG-005 Version-1,31 July 1987.(Red book)

4. NCSC.TRUSTED NETWORK INTERPRETATION ENVIRONMENTS
GUIDELINE. National Comouter Security Center. NCSC-TG-011 Version-1. 1
August 1990.

5. NCSC. GLOSSARY OF COMPUTER SECURITY TERMS. National
Computer Security Center. NCSC-TG-004 Version-1. 21 October 1988.

6. NCSC, TRUSTED DATABASE MANAGEMENT SYSTEM INTERPRE-
TATION OF THE TRUSTED COMPUTER SYSTEM EVALUATION
CRITERIA (TDD. National Computer Security Center, NCSC-TG-21. Version-1.
April 1991.

7. NCSC, GUIDANCE FOR APPLYING THE TRUSTED COMPUTER
SECURITY EVALUATION CRITERIA IN CERTAIN ENVIRONMENTS.
National Computer Security Center. CSC-STD-003-85 25 June 1985. (Yellow book)

8. Government of Canada, CANADIAN TRUSTED COMPUTER PRODUCT
EVALUATION CRITERIA, Canadian Systems Security Centre, Communications
Security Establishment, Government of Canada, Version 2.ie, July 1991.

9. UK IT CESG, "UK IT Security Evaluation and Certification Scheme",
undated pamphlet.

10. USAF. AIR FORCE TRUSTED CRITICAL COMPUTER SYSTEM
EVALUATION CRITERIA (TCCSEC). U.S. Air Force HQ Electronic Security
Command. San Antonio, TX 78234-5000. 25 June 1990. Draft

11. USAF. AIR FORCE TRUSTED EMBEDDED COMPUTER EVALUATION
CRITERIA INTERPRETATION (TCCSECI). U.S. Air Force HQ Electronic
Security Command. AFCSC SRVC. San Antonio, TX 78234-5000. 25 June 1990.
Draft

250

12. K.J. Biba. "Integrity considerations for secure computer systems".
Technical Report MTR 3153, The Mitre Corporation. Bedford, MA, June 1975. Also
available from USAF Electronic Systems Division, Bedford MA. as ESD-TR-76-372,
April 1977.

13. D.E. Bell and L.J. LaPadula. Secure Computer Systems. Three volumes.
Technical Report MTR-2547, The MITRE Corporation Bedford. MA. March-
December 1973.

14. D.D. Clark and D.R. Wilson. " A Comparison of Commercial and Military
computer Security Policies". In Proc. 1987 Svmposium on Security and Privacy,
pages 184-194. Oakland. CA April 1987. IEEE Computer Society.

15. T.A. Parker. "Restating the Foundation of Information Security".
Proceedings 14th National Computer Security Conference, pages 480-493. October
1991

16. J.C. Nagengast. "Defining a Security Architecture for the Next Century".
Journal of Electronic Defense. Jan 1992 Pages 51-53.

17. C. Cecere and W. Ruppert. "A Framework for Systems Security". Journal of
Electronic Defense, January 1992. Pages 54-56.62.63.

18. J.D. Weiss. "A System Security Engineering Process". In Proc. 14th National
Computer Security Conference, pages 572-581. October 1991.

19. NSA. Information System Security Products and Services. Available
quarterly from U.S. Government printing office

20. K.A. Siil. "Experiences in Multi-Level Security on Distributed
Architectures". In Proc. 14th National Computer Securitv Conference, pages 205-
214. October 1991.

21. R. O'Brien and C. Rogers. "Developing Application, on LOCK". In Proc. 14th
National Computer Security Conference, pages 205-214. October 1991.

251

INTEGRITY AND ASSURANCE OF SERVICE PROTECTION
IN A LARGE, MULTIPURPOSE, CRITICAL SYSTEM

Howard L. Johnson
Information Intelligence Sciences, Inc.

1903 So. Franklin St., Denver, Colorado 80210

Chuck Arvin and Earl Jenkinson
CTA Incorporated

7150 Campus Drive, Suite 100, Colorado Springs, CO 80918

Captain Bob Pierce
AF Cryptologic Support Center

Hq. AFIC, AFCSC/SR, Kelly AFB, TX 78243-5000

ABSTRACT

This paper is the third and last in a series to discuss goals and
concepts of the "Air Force Trusted Critical Computer System
Certification Criteria." The first paper described an approach to
protect against the malicious logic threat for a DoD system. The
second, building on the first, identified how a system with a
critical mission uses strict resource allocation and time
constrained response to help ensure mission success. This paper,
building on the previous two, addresses integrity and assurance of
service protection in large multi function systems, where only some
of the functions are critical to National objectives or human
safety. Results use and expand on principles of the Orange Book.
A final section defines an approach to integrating the three
security objectives: confidentiality, integrity, and service
assurance.

BACKGROUND

[1] described an approach to protect against malicious logic for a
DoD system. [2] identified how a system with a critical mission
uses strict resource allocation and time constrained response to
help ensure mission success. Key results, that form the basis for
this paper, are presented in Appendix 1. The three paper series is
a synopsis of requirements and issues from the Air Force Trusted
Critical Computer System Certification Criteria (AFTCCSCC) [3],
The ideas were first presented in preliminary form in [4].

Application of the forms of protection functionality and assurance
described by the TCSEC [5] are also necessary for integrity and
assurance of service protection in DoD applications. However,
additional mechanisms are also required. It is important to note
that these additional mechanisms would be equally useful to augment
Orange Book requirements to help defeat a malicious attack threat
whose objective was to gain unauthorized access to sensitive/
classified information, while still assuring accomplishment of
critical mission functions.

252

PROBLEM

The TCSEC does not adequately address attacks that implant
malicious code. A confidentiality policy that allows upgrading of
data, all but invites malicious code insertion and execution (e.g.,
by other cooperative malicious code) in often critical, Top Secret
operations. However, for an attacker to release protected data
requires exploitation of a flaw or a covert channel. In an
integrity/denial of service attack, the attacker must find a way
(e.g., a covert input channel) to insert and execute code. Once
inside, no other flaw (analogous to the leakage path) is needed.
Even the single level solution [2], where system data and
functionality are critical, weakens as the system becomes large and
complex, with exposure to many users. The reason is increased risk
of covert data input channels and difficulty of assurance due to
combinatoric effects.

Protection Domains

In Panama, the U.S. President was isolated in a crowded
environment, using trusted individuals and special procedures.
This is because his function is deemed (at least by the U.S.) as
more critical than other people present; plus he is considered a
high probability target. The TCSEC takes a somewhat analogous
approach with the TCB. Security is critical and the TCB is vital
to security protection. Personnel trust is a factor in determining
division/class [6], which dictates TCB strength. Goals in building
the TCB include isolating critical functionality and reducing
complexity to minimize the probability of exploitable flaws. It is
especially undesirable for a rogue program to become part of the
TCB, because it could use the special privileges to compromise
security.

Isolation by Criticalitv Level

For the same reasons given above, it makes sense to isolate and
minimize functionality vital to accomplishing a critical mission.
There can be levels of isolation based on gradations of criticality
of functions and data to the mission objective, where part of that
objective is critical or highly critical to National goals and/or
human life. The functionality that eliminates the possibility of
the unauthorized launching of a nuclear weapon might be more
critical than assuring proper support of an authorized launching.
Two independent critical functions, conventional weapon firing and
operator safety, might be considered equally critical, but
isolating these functions from each other can provide a higher
integrity assurance for each. It makes no sense for highly
critical functions to be exposed to additional risk inherent to
programs, data, and users of other functions.

Data flow control can help minimize the possibility of malicious
logic insertion or other unauthorized changes originating from
outside or at a lower (less critical) level. This isolation is
similar to that proposed in the Biba integrity model [7]. However,

253

isolation and restricted data flow are only a small part of the
security protection, as can be seen from Appendix 1.

The need for a hierarchical protection also arises from fiscal
considerations. Costs of special procedures, special background
investigations, and special vaults and containers may only be
justifiable valid for Top Secret data, with less expensive
approaches used where data is not as sensitive. Analogously, more
money should be allocated to system security for more critical
functions than systems where the impact of loss would be less.

Partial Ordering

Applying the algebraic property of partial ordering also provides
additional protection. If the transitive subproperty of partial
ordering is not met, malicious code can compromise the policy, as
illustrated in Figure 1. The hierarchical properties also provide
a set of rules to remind programmers and users that to allow into
a critical environment either data or programs that have not been
assured to be malicious logic free — is to make a terrible
mistake.

CRITICALITY LEVELS AS A CONCEPT

Relationships and differences between levels of sensitivity,
criticality, and integrity are important to our concept. (Note
that in this paper, the term sensitivity is analogous with
confidentiality.) Data security classification and mission
criticality are not generally related (rather they are orthogonal
requirements). It is desirable for both sensitive and critical
functions to have high integrity, but integrity might be desired
for other reasons in a critical function (e.g., accuracy, fidelity,
or consistency). Criticality pertains to the desire for mission
success. For critical functions, we minimize the number of
personnel involved and take
special precautions (e.g.,
background investigations) to a wanta to write A ^ M«HOIO» io«io ia put
ensure greater trust. The to A inanity ^ *A* ~^^ in A and »• 11*9*1
higher the criticality, the /N. N*«"'• •ooompn«h«d
greater the required trust.

Security Policy

To briefly review the
mandatory policy presented in
the AFTCCSCC, three
criticality levels are
specified (Highly Critical,
Critical, and Noncritical).
The following is an excerpt
from the flow policy
(illustrated by Figure 2 from
[]).

B putt malloloua logic In C

(A dual axlata by raplaotng
read (r) with writ* (w»

Figure 1 Nan Lattios Malicious Throat Examplo

254

Rule 1 (simple security
property) : A subject is
allowed read access to an
object only if the
criticality level of the
object dominates the
criticality level of the
subject.

Rule 2 (confinement
property): A subject is
allowed write access to an
object only if the
criticality level of the
subject dominates the
criticality level of the
object.

Syvtwn

Allowed
Acoet*

Allowed
Flow

Figure 2 Criticality Lsvois, Data Flow, and Authorization

Rule 3 (execution rule): A subject is allowed execute access to a
program only if the criticality level of the program dominates the
criticality level of the subject.

Criticality level A is said to dominate criticality level B if the
hierarchical criticality level is greater than or egual to that of
B and the nonhierarchical categories of A include those of B as a
subset. Highly Critical is greater than Critical and Critical is
greater than Noncritical. To make implementation practical for the
DoD, it is suggested that a person have a Top Secret Clearance to
be allowed Highly Critical access and a person have a Secret
Clearance to be allowed Critical access. (However, at the DAA's
discretion, other criteria can be used.) A person with a
particular access also has authorization for lower levels.

Treatment of Categories

In a "write," in criticality, the categories of the subject must be
a subset of the categories of the object, so malicious code is not
introduced into a new category. This supports the concepts of
"need-to-modify" or "need-to- execute." In a "read," categories of
the object must be a subset of the categories of the subject to not
introduce malicious code from a new category. The term "dominates"
can be interpreted as "is a subset of." (Sensitivity that supports
the concept of "need-to-know" in which "dominates" can be
interpreted as "is a superset of.") In sensitivity, association
with a category is an added privilege. In criticality it is a
restriction of privilege.

SURPRISING FEATURES OF CRITICALITY PROTECTION

Two topics emerge from this policy definition: how to deal
operationally with exceptions and how the "execute policy" is
implemented. These are addressed in the next two sections. Other
peculiarities of criticality are also discussed.

255

Dealing with Required Policy Violations

Security policy models are simple abstractions and conservative
statements of control, but as such, do not always allow
operationally required data flow. This is also true in practical
applications of TCSEC multilevel security. "Policy violations" in
the context of this paper refer to intended design of mechanisms
that allow information flow contrary to security policy, while
still supporting the fundamental security objectives. If a
procedure can determine, with an acceptable degree of certainty,
that no malicious logic exists in a set of data (including
programs), then the data may be upgraded to a higher criticality
level. Code and data can exist redundantly at different levels as
in sensitivity. Data temporarily loaned can be proven unmodified
(through modification detection mechanisms). Security guards
should be used where policy violations must occur.

Execute Access

From a definition in the NSA Discretionary Access Control document
[8] "Execute allows a subject to run the object as an executable
file. On some systems, execute access requires read access." From
the policy stated previously, a lower criticality level is not
permitted to execute a program at the higher criticality level.
(If allowed, this would permit the second half of a "pass-code-and-
run-it" attack). Since a lower level has read capability, it could
read a program from a higher level and execute it, but only at its
own level. A higher criticality level is allowed to execute a
lower criticality program, however, the higher criticality has
write, but not read, privileges. The result is that a "write" down
or trusted communication with the TCB must be associated with an
authorized "execute" across criticality levels.

Risk Management Concept of "Exposure"

The sensitivity risk index is defined in [6] as a function of
maximum data level (e.g., sensitivity security classification) and
lowest trust level (e.g., security clearance). However, in
criticality, risk is additionally a function of the lowest
criticality level of data present in the system. Therefore,
exposure can be defined as the difference between the maximum
criticality level and the minimum of lowest trust level and lowest
criticality level. Once data or functionality has been exposed to
a lower level of criticality it must be labelled at the lower level
until some process can ensure the nonexistence of malicious logic
and certifies its safe use again at the higher level.

Applicability of Mode

Ideas of "dedicated mode" and "system high mode" introduced in [6]
take on unwanted characteristics when applied to criticality.
Automatic upgrade of data increases risk significantly. Automatic
downgrade lessens the protection of critical functionality. The
best strategy is multilevel isolation by "true" criticality level.

256

Protection Granularity

In integrity and service assurance protection, assignment of
"criticality classification" is not simply at the data item level
as it is in sensitivity, but is more fundamentally related to the
different hardware, firmware, software, and data elements depended
on to meet critical mission objectives. Criticality protection
granularity must be consistent with (and adaptive to) the
protection needs of these critical elements. A primary concern is
the insertion of a malicious code string. Code can be inserted a
little-at-a-time, analogous to the leaking of classified, though
the problem of reassembly creates more complexity for the attacker.
In conclusion, the granularity of criticality protection is similar
to sensitivity, but is determined by completely different factors.

Semantics and Syntax

Protection of sensitive data is normally a semantic issue, and only
occasionally a syntax issue. Classified information can usually be
conveyed in many ways (e.g., verbally or graphically), where the
human must determine the context and filter information according
to the situation. Malicious logic, unauthorized execution or any
means to modify data, are more likely to be a syntax problem
(certain spoofs are exceptions). Malicious logic must be
syntactically precise to be an effective attack.

Labels and Exportation

Criticality marking is analogous to sensitivity marking for stored
electronic information. However, printed information reguires no
criticality marking, since malicious logic generally cannot be
passed unaware through a human back to electronic form, retaining
the detail reguired. If the TCB exports an object to a multilevel
I/O device that does not accept data in machine readable form, the
label reguirement can be dropped. Examples are devices driven by
computer generated control data. (Future applications using print
output and scan/recognition input might be an exception.) The user
should be continually aware of the criticality level of operations
and the task being run to prevent inadvertent compromise (e.g.,
loading uncertain input data). This can be accomplished by visual
headers or other means.

COMBINING CRITICALITY AND SENSITIVITY

Nothing in the TCSEC or its application is altered by the AFTCCSCC.
For a system, either the TCSEC or the AFTCCSCC may be applied, or
both may be applied. A division/class assignment from the TCSEC is
unrelated to the division/class from the AFTCCSCC. The stronger of
shared mechanisms (e.g., identification/authentication) will also
satisfy the weaker reguirements. Integrity and confidentiality
(not considering denial of service) have been merged in many
systems [9]. Merging sensitivity and criticality is analogous.
Neither takes precedence; both must be satisfied.

257

Figure 3 shows the
division/classes of the AFTCCSCC.
Given a class (say Fl) and a
TCSEC class (say B2), the
requirements can be laid
side-by-side in each policy area
(e.g., identification/
authentication and audit). The
requirements have been written so
they can be easily merged.
First, the policy models must be
merged into a single model. (A
graphical presentation of a
combined lattice is shown in
Figure 4.) The context of the
requirement indicates whether: 1)
both requirements need to be
supported separately, 2) they
need to be further broken down,
3) one takes precedence over the
other because it is stronger, or
4) they can be combined into a
single requirement. If they are
independent, it must be ensured
that they do not conflict with
each other or any other
requirements, and that they fully
specify the capability.
Conflicts must be resolved. If
requirements are incomplete, they
must be augmented.

Criticality
Division/Class

Protection

H Same as TCSEC D

Q Single Level
01 Almost the same as TCSEC C1
Q2 Protects against malicious logic
G3 Supports Critical operations

F Multilevel (Labels)
F1 Critical and Highly Critical
F2 Critical and Non Critical
F3 No clearance and Critical

E(E1) Formal methods (no clearance
and Highly Critical)

Figure 3 AFTCCSCC Division/Class

3«rnitivity
(UttiM Row) /

a /

T8

\^HC crltioallty
„/ (Uttio* Column)

Authorization

Figure 4 Flow and Authorization Lattico

Sensitivity and Criticality as Mechanism Protection Requirements

A classified mission may not be critical. Nevertheless, mechanism
integrity and service concerns exist. A critical mission may not
deal with classified data. Even so, there are sensitivity aspects
to criticality mechanisms (e.g., passwords, keys, or mechanism
knowledge). Highly Critical mechanism sensitivity aspects should
be protected at Top Secret and Critical mechanism sensitivity
aspects should be protected at Secret (or some DAA authorized
equivalent).

Retrofitting TCSEC Protected Systems

There is no experience, but it is felt that a B2 protected computer
system can be retrofit with G2 through F2, a B3 can be retrofit at
F3 and below, and an Al can be retrofit with any criticality
division/class. The effort and cost of retrofit will depend on the
individual system. A C2 computer system can probably only be
retrofit with a subset of G2 or G3 requirements. The primary
problem is the required strength of the TCB and the capability of
the reference monitor.

258

SUMMARY

It has been argued that partially ordered levels with categories
are important to integrity and assurance of service protection for
large systems with some critical reguirements. It is shown how
TCSEC and AFTCCSCC protection objectives can be simultaneously
pursued. A summary of the key reguirements discussed here are
presented in Appendix 2. It is hoped that the reguirements of both
Appendix 1 and 2 will be seriously considered in building future
National and Federal security criteria.

BIBLIOGRAPHY

[1] Johnson, H.L., C. Arvin, E. Jenkinson, B. Pierce, "A Proposed
Approach for the Air Force to Deal with the Malicious Logic
Threat," Proceedings 14th National Computer Security Conference,
NIST and NCSC, October 1-4, 1991, pp. 137-146

[2] Johnson, H.L., C. Arvin, E. Jenkinson, B. Pierce, "Proposed
Security for Critical Air Force Missions," Proceedings 7th Annual
Security Applications Conference. December 2-6, 1991, pp. 209-217

[3] Air Force Trusted Critical Computer System Certification
Criteria. Air Force Special Security Manual 5029, Air Force
Cryptologic Support Center, August 14, 1991

[4] Johnson, H.L, "Security Protection Based on Mission
Criticality, Proceedings Fourth Aerospace Computer Security
Applications Conference. IEEE, December 12-16, 1988, pp. 228-232

[5] DoD 5200.28-STD, "Trusted Computer System Evaluation
Criteria," December, 1985

[6] DoDD 5200.28, "Security Reguirements for Automated Information
Systems (AISs)," March 21, 1988

[7] Biba, K.J., "Integrity Considerations for Secure Computer
Systems," ESD-TR-76-372, USAF Electronic Systems Division, Bedford,
MA, April, 1977

[8] NCSC-TG-003, A Guide to Understanding Discretionary Access
Control, NCSC, 30 September 1987

[9] Lipner, S.B., "Non-Discretionary Controls for Commercial
Applications," Proceedings 1982 IEEE Symposium on Security and
Privacy. 26-28 April 1982, pp. 2-10

APPENDIX 1

Protect against the malicious logic threat for a DoD system (G2)

1. Provide a TCB safe from malicious logic attacks.
2. Provide a trusted path between users and the operating system
with mechanisms to avoid replay and spoofing attacks.

259

3. A reference monitor-like function must disallow, by process
and by access mode, access to objects not intended by the design
4. Selectively use encryption or other coding schemes to isolate
data/programs, to detect modification of data/programs, and to
authenticate origin, time, and identity
5. Assure there are no uncontrolled paths to insert and/or
execute malicious code
6. Provide for near-real-time detection of select operational
abnormalities that suggest a malicious intrusion
7. Specify that programs report internal faults potentially
attributable to a malicious attack
8. Reguire a resource scheduling policy, violation of which could
be considered a potential denial of service attack
9. Search off-line media to identify known malicious or
suspicious logic
10. Provide a fault source identification "expert" to assist in
determining if a fault is of malicious origin
11. Emphasize safe development and life-cycle configuration
management of programs and data
12. Augment verification and test to identify existence of
malicious logic or the presence of malicious intent
13. Perform penetration testing to determine strength against
malicious attack.

Protect critical missions against loss of integrity and denial of
service attacks (G3)

1. Use background investigations to establish user trust
2. Define mission accomplishment under all conditions
3. Determine time available to identify and fix problems
4. Develop and maintain a time budget and place it under
configuration control
5. Use concurrency and graceful degradation to meet time budget
6. Identify appropriate response for each detected abnormal
condition
7. Provide resource allocation policy for normal, peak, and
degraded conditions
8. Detection criteria must be alterable during attack and after
response feedback
9. Provide trusted recovery, diagnosis, and repair in response to
detected problems
10. Time vulnerabilities should not be revealed through documents
or operations (e.g., traffic) analysis
11. Recovery should utilize hardware, information, and software
redundancy
12. Design shall avoid common vulnerabilities in redundant
elements
13. Use problem isolation and containment
14. Use diagnostics, fault source experts, and person-in-the-loop
15. Repair shall control, eliminate, or bypass the intruder and/or
his code and replace faulty program or data
16. Testing shall consider system resilience

260

APPENDIX 2

Integrity and assurance of service protection in large multi
function systems, where only some of the functions are critical to
National objectives or human safety. (Fl through El)

1. Isolate and minimize functionality vital to critical missions
2. Enforce least privilege in criticality
3. Mandatory criticality shall support partial ordering, a simple
security property, a confinement property, and an execute policy
that prevents malicious code insertion and execution
4. Criticality upgrade reguires certification, modification
detection, and a guard
5. Criticality exposure is defined as the difference between the
maximum criticality level and the minimum of lowest trust level and
lowest criticality level
6. Once data or functionality has been exposed at a lower level
of criticality it must be labelled at the lower level
7. In a "write," categories of the subject must be a subset of
the categories of the object
8. In a "read," categories of the object must be a subset of the
categories of the subject
9. "Dedicated" and "system high" modes increase criticality risk
10. Criticality is dynamically assigned to hardware, firmware,
software, and data depended on to meet critical mission objectives
11. Labeling is based on syntax
12. Printed information reguires no criticality marking
13. Labeling is only reguired machine readable data
14. Highly Critical mechanism sensitivity should be protected at
the Top Secret level and Critical mechanism criticality aspects
should be protected at the Secret level
15. The user should be made aware of system and task criticality

261

Internetwork Security Monitor:
An Intrusion-Detection System for Large-Scale Networks

LT. Heberlein, B. Mukherjee, K.N. Levitt

Computer Security Laboratory
Division of Computer Science

University of California
Davis, Ca. 95616

ABSTRACT

The model for an Internetwork Security Monitor (ISM) is presented. The objective of
the model is to significantly improve our capability to detect and react to intrusions
into an arbitrary wide-area network (WAN) (e.g., the Internet) through a distributed
intrusion-detection and analysis system. The system will monitor the various
component networks of the internetwork and bring potentially intrusive behavior to
the attention of the local-network security managers. The model primarily extends the
DIDS and NSM intrusion-detection systems and takes advantage of, but does not
require, cooperative host monitoring. This design will provide the first intrusion-
detection system that aggregates information from different monitors over wide-area
networks and will be deployable at different sites with widely different operating
environments and security requirements.

1. INTRODUCTION

The prevalence and ease of use of networking to provide remote access to resources has
brought with it a set of previously unanticipated problems. Network managers worldwide are
extremely concerned with the problem of network intrusions, which are unwanted or
unauthorized use of the network to gain access to (and sometimes modify) both network and
computing resources. These intrusions have often appeared in the popular news media and
have been a serious impediment to many organizations obtaining network connection.

What do we mean by network intrusion? For our purposes here, we consider a network
intrusion to be any unwanted or unauthorized actions being taken across the network that affect
remote resources. These actions include those of the "Wily Hacker" [Sto89]—where the
intruder aims to gain unauthorized access to information on a number of computers on the
network—unauthorized remote modifications of router tables in an Internet, and attempts to
deny use of the network to authorized users.

Examples of network intrusions that concern operators include:

• unauthorized modifications of system files that permit unauthorized access to either
system or user information

• unauthorized access to user file space
• unauthorized modifications of user files/information
• unauthorized modifications of tables or other system information in network

components
• unauthorized use of computing resources (perhaps through the creation of unauthorized

accounts or through the unauthorized use of existing accounts.)

Intrusion Detection Systems (IDS) attempt to detect the presence of such attacks. Early
IDS were designed around the analysis of a single host's audit trail. Their examples are SRI's
early model of the Intrusion Detection Expert System (IDES) [Den87], National Security

262

Agency's MIDAS, Haystack Laboratories' Haystack System [Sma88], Los Alamos National
Laboratory's Wisdom & Sense (W&S) [Vac89], and AT&T's ComputerWatch [Dow90].
However, with the proliferation of computer networks, many of these IDS began to apply then-
host based techniques to small networks of computers. Their examples include SRI's IDES
[Lun90] and the Distributed Intrusion Detection System (DIDS) [Sna91].

Unfortunately, even with the extension of IDS into small networks of computers,
because the networks are often interconnected, an DDS's ability to detect intrusive activity and
to determine the party responsible for such activity is limited. Intrusion detection is an inter-
network problem. Often intrusions or attacks affect more than a single network, and detection
may require exploitation of data from multiple networks or computers.

To address these limitations, we designed a model, called the Internetwork Security
Monitor (ISM), to perform intrusion detection in a highly interconnected wide-area network.
Specifically, our ISM design requires the development of a hierarchical internetwork monitor
as an extension of ongoing work in distributed-intrusion detection. In extending the LAN
monitoring capabilities into an internetwork environment, we are exploring the feasibility of
different design alternatives for distributed-network traffic monitoring and analysis, including
the following hierarchical architecture. Under this architecture, independent monitors are placed
at various locations over an intemetworked environment. These monitors exchange and share
information (including those on hypothesized attacks) to detect possible security breaches.
Subnetworks, in turn, exchange information among one another to detect inter-subnetwork
attacks.

The scenarios in Section 2 motivate our work by describing the type of behavior that
our intemetworked security monitor model is designed to detect and analyze. Section 3
presents an overview of the ISM components. Section 4 discusses how complete accountability
can be attained in a networked environment. Section 5 presents the ISM model as an extension
of current work being done. Finally, Section 6 provides some concluding remarks.

2. SCENARIOS

Because the Internet is distributed, the evidence needed to detect an intrusion may also
be distributed across the Internet For example, suppose an intruder systematically attacks
hosts at a particular organization (site A) until he successfully penetrates a host. This attack
method, called the doorknob attack, may be successfully detected at site A. However, once the
intruder has acquired a foothold on a computer at site A, he may notice a .rhosts file in a user's
home directory, which indicates that the user trusts logins from computers at a second
organization (site B). Hoping the trust is mutual (i.e., the user has .rhosts files in his accounts
at site B for logins from site A), the intruder could masquerade as this user at site A and
successfully log into a computer at site B.

Since this login would be between two machines which do occasionally exchange
logins, and since no vulnerabilities other than trust would be exploited, site B's intrusion-
detection system would be unable to discern this login as an intrusion.

A second scenario is based on an actual attack detected and analyzed by the Network
Security Monitor (NSM) [Heb91]. This attack also begins as a doorknob attack. The intruder,
attacking across the Internet from site A, attempts to penetrate over sixty computers before
eventually finding one with the default (and flawed) system configuration in place. Once the
intruder penetrates this host, the attacker quickly inserts a Trojan login program, and prior to
the intruder exiting the penetrated machine, a login from site B successfully exploits the newly
installed Trojan login program. The intruder from site B remains logged in for several hours
exploiting various bugs in systems as well as the trust between the organization's machines.

263

Investigation the next day shows that neither of the hosts from sites A or B were the
root of the attacks. Their systems had also been attacked and merely used as launch pads to
attack the computers.

The next night, the intruder penetrates the machines from a third organization (site C).
Detecting the penetration, we examined the host at site C as the intruder, but the host at site C,
obviously subverted, reports that no one is logged on. Our trail has gone cold again.

From these and other incidents, we are convinced that we have very little chance of
catching intruders originating outside our organization. With current intrusion-detection
techniques, we can detect many intrusions into our systems, but attacks from outside are
relatively difficult to dissect

3. ARCHITECTURE OVERVIEW
The ISM model extends research and development efforts already existing in the field

of intrusion detection. Primarily, the ISM extends the Distributed Intrusion Detection System
(DFDS) (see [Sna91]) into arbitrarily wide networks. Multiple DIDS-like monitors, called ISM
domain monitors, communicating through well-defined protocols form the core of the
distributed ISM. In addition to the monitors themselves, Security Domain Name Servers
(SDNS), based on the Domain Name Server (DNS) model, provide a mechanism for the ISMs
to locate each other across the Internet Finally, security workbenches allow network
managers to logon to their local ISM domain monitor to examine the results of the monitor's
analysis, query further into possible intrusions, exchange information with other network
security managers, and administer various security tools such as Security Profile Inspector
(SPI) or Computer Oracle Password Security system (COPS). Although all three major
components—ISM domain monitors, Security Domain Name Servers, and security
workbenches—comprise the ISM model, this paper focuses on the ISM domain monitors.

4. ACCOUNTABILITY
One of the most fundamental and critical capabilities in a computer system security is

establishing accountability for actions performed by individuals. A combination of
authentication and auditing mechanisms residing in the operating system usually provides this
accountability. In such systems, the user identifies and verifies himself (via a password) to the
authentication mechanism, and the auditing mechanism keeps account of the activities
performed by that authenticated user.

Unfortunately, the accountability can be lost when the user crosses operating system
boundaries (e.g., logging into another host across the network). Although the user will be re-
authenticated by the new machine (either with a new password or by trusting the authentication
of the first host), the accounting of the user's activities will be distributed across the audit trails
of multiple hosts. If users are restricted from changing their identification as they move across
systems, and if the audit timing can be synchronized across auditing mechanisms,
accountability can be achieved; however, such restrictiveness is not attainable in many
environments.

4.1 NETWORK IDENTIFIER
The Distributed Intrusion Detection System (DIDS) was designed in part to achieve an

accountability across a network of heterogeneous systems. When a user initially signs on to
one of the components of the network, that user is assigned a Network Identifier (MD). As
the user moves across the network of computers, all activity performed by that user on any
host is mapped to the NID. Therefore, accountability across the network is established.

264

To account for a user's activities across the network, DIDS, working with the
established auditing mechanism on each host, creates a map between a user's UID for a session
and an NID. A user's activities across a network can be accounted for by extracting the
activities from each host associated with a UID which maps to the same NID.

DIDS creates the map between the UID on a host and the NID by tracking a user's
movement across the network and exploiting transitivity. For example, if user A on hostl
performs a remote login across the network to host2 as user B, DIDS tracks A@hostl to
B@host2, and the instance B@host2 is mapped to the same NID as A@hostl. If the user
performs a second remote login from host2 to host3 as user C, we can use the simple rules

NED(C@host3) = NID(B@host2)
and NID(B@host2)=NID(A@hostl)

to conclude that the NID for C@host3 is the same as the NID for A@hostl.

The tracking between users and hosts is performed by treating a network connection as
a shared resource and determining which users are accessing that resource. For example, if a
user creates a remote login session (called session2), on host2, DIDS first identifies the host-
to-host connection (called net-rsrc) responsible for the session and binds the information as the
pair <net-rsrc, session2@host2>. DIDS then determines which session on hostl meets the
requirements <net-rsrc, ?@hostl>, and tracking is achieved (see Figure 1).

network connection

Hostl Host 2

Figure 1. Network Connection as a Shared Resource

Unfortunately, in many environments, not all computers on the network support a host
monitor which provides either the accountability for that particular host or the information
required to track users across the network. In such environments, security and accountability
can be increased by using a network monitor such as the Network Security Monitor (NSM).

4.2 TRACKING USERS THROUGH HOSTS WITHOUT MONITORS

The NSM, initially designed to detect intrusive activity across a local-area network
(LAN), already augments DIDS' analysis capability by scrutinizing network activity into hosts
which do not support host monitors; therefore, all hosts in the DIDS domain can be monitored
to a certain level for the presence of intrusive activity. However, the current DIDS system
cannot perform the NID tracking when a user passes through an unmonitored host. The
following example illustrates the problem.

Suppose the DIDS-monitored domain consists of three hosts, two of which support
host monitors (hosts one and three) and one which does not (host two). In this domain, a
person initially signing onto hostl and then performing a remote login to host3 will have all of
his activities mapped to a single NID, so DIDS maintains complete accountability. However, if
the person first performs a remote login to host2 (the unmonitored host) and then performs a
second login from host2 to host3, the user's activities on host3 will not be mapped to the same
NID as his activities on hostl, so DIDS loses complete accountability (see Figure 2).

Our challenge has, therefore, expanded to obtaining complete accountability across all
monitored hosts by mapping a user's activities on all these hosts to the same NID even if the

265

user temporarily leaves the domain of monitored hosts. Fortunately, the mapping of a user's
activities can still be obtained by tracking the user by connections, even through unmonitored
hosts, if we simply expand our notion of a network connection.

network connection network connection

4 \ f ^. 1 ^ / >
/'inter»ctive\
V^ session J V^ session J

/'tt*Bractiv«T\
V^ session J

Host 3 Hostl Host 2

Fi gure 2. Multiple Hops Across the Network

4.2.1 EXTENDED CONNECTIONS

The previously described DIDS algorithm attains a map of a UID to an NED by tracking
the user's login session back to the original login session. DIDS performs its tracking by
determining the ownerships of a shared resource, namely a network connection, and
recursively applies the procedure until DIDS reaches the original login session. However, the
recursion fails when one of the hosts involved is an unmonitored host. The following
conceptual extension to network connections allows us to continue the recursive algorithm
through unmonitored hosts.

In the previous example, a user on hostl performs a remote login to host2 and then
performs a second remote login to host3. Figure 2 presents a logical view of the user's
actions. Using some I/O device (e.g., a terminal) connected to the session on hostl, the
individual can perform actions on host3 and view the results as if he were connected directly to
the session on host3. This "virtual," direct connection occurs because the session on host2 is
acting as a repeater. Thus, all commands and results are passed through the session on host2
unaltered. By exploiting this invariance, we can view the two network connections in Figure 2
as components of a single "extended" connection between the session on hostl and the session
on host3. Now when the DIDS recursive algorithm used to track users encounters an
unmonitored host, the algorithm can bypass the host by exploiting the extended connection, if
one exists, and continue the algorithm at the next monitored host.

Formally, we define an extended connection as a set of network connections used to
transport data and control between two sessions. Figure 3 shows an extended connection in
relationship to data, host-to-host protocols, point-to-point protocols, intermediate sessions, and
routers. As Figure 3 shows, only the data (e.g., control information sent from hostl to host3)
remains invariant across the various network components. By exploiting this invariance, via a
method we call thumbprinting, the NSM maps the various host-to-host connections to the same
extended connection.

Inter-
active

session
1

II "W^WWWW^¥^^>^^^-^>WWHIWWWI

data

router

Inter-
active

session
2

host-to-host

....III
- i

router
""*"

Inter-
active

session
3

Figure 3. Extended Network Connection

266

4.2.2 THUMBPRINTS

The NSM maps host-to-host connections to an extended connection by assigning to
each host-to-host connection a thumbprint representing the data flow for that connection for a
specified period of time and then comparing the thumbprints for the various connections. If the
thumbprints for two host-to-host connections match (within a measure of tolerance), they are
mapped to the same extended connection. Thumbprinting even works when the number of
intermediate, unmonitored hosts, between two host-to-host connections is unknown (see
Figure 4).

thumbprint thumbprint

n-1

Figure 4. Tracking a User Across Unmonitored Hosts

We formally define a thumbprint for a host-to-host connection as a vector, X = <xi,
X2,..., xn>, where each xi is a counter for the occurrence of some attribute in the data. Two
thumbprints, X and Y, are compared for similarity by determining the distance between the
two vectors, I X - Y I. The certainty that the two connections which created the thumbprints
are actually part of the same extended connection is inversely related to this magnitude.

The mapping of data in a host-to-host connection to a thumbprint vector, although
extremely important, is not necessarily uniquely defined, and we are experimenting with
various implementations. The implementations are driven by several goals described in Table
1.

Table 1. Thumbprint Implementation Goals

Resolution The primary purpose of the thumbprint is to
correctly recognize that two host-to-host
connections are part of the same extended
connection.

Semantic Free As will be seen later, thumbprinting will be
used in an open environment where privacy
is an issue; therefore, the thumbprint, while
being able to represent the connection,
should not reveal the contents of the
connection data.

Efficiency The calculation of each xi as well as the
calculation of IX - Y I must be efficient in
order to allow for the thumbprinting of
thousands of simultaneous connections and
their comparison in real time.

267

Up to this point, we have argued for the need for accountability in computer systems,
and we have shown that for complete accountability across operating system boundaries, we
need to be able to track users across the boundaries. DIDS has proven that tracking can be
performed in a small network of monitored hosts, and we have described an extension to DIDS
allowing us to track users across an unknown number of unmonitored hosts. We now present
an architecture based on NSM and DIDS which provides for intrusion detection and
accountability in large-scale interconnected networks (e.g., the Internet).

5ISM
The ISM model links together security systems monitoring particular domains (e.g., a

DIDS-monitored domain) via standard information exchange protocols such as the Common
Management Information Protocol (CMIP) to create a large-scale, highly distributed intrusion-
detection system. The model is flexible in that different security domains can choose their own
level of security analysis, from virtually none to complete transaction-to-transaction analysis,
as long as they provide a minimum set of functionality described below. Finally, the model is
hierarchical and supports the current network management structure by hiding a site's internal
security structure from outsiders.

5.1 ISM PEER-LEVEL COMMUNICATION
An ISM is responsible for a specific set of hosts. When a user initiates a connection

from a host in one ISM domain to a host in a second ISM domain, the ISMs may exchange
information to allow a more accurate analysis of the security state of their own domains. At a
minimum, an ISM must be able to identify the source (local or external to the domain) for
connections leaving its domain. If the user initiating the connection originated inside the ISM
domain, the ISM need only respond that the connection began internally and not reveal the
actual origin of the user. If the connection originated outside the ISM domain (e.g., the user
merely passed through the domain), the ISM must respond with the host-to-host connection
definition of the connection entering the domain. This minimum capability of an ISM prevents
an intruder from exploiting the domain in an attempt to disguise his origin. The protocol to
support this functionality is presented below:

• GET TIME <time>
• GET CONNECTION TCP/IP-DEF <def> TIME <time>
• GET ORIGIN CONN-ID <id>

The first request allows an ISM to synchronize its clock to the remote ISM. An
alternate, and preferred method is to assume all monitors are running under a time protocol
(e.g., the network time protocol, NTP). The second request (with the time given in the remote
ISM's time frame) returns an identifier, which can be used to make further requests. The third
request, fulfilling the minimum requirement for an ISM, returns the origin of the user (relative
to the local ISM) as either local to the domain or external (including the TCP/IP-DEF).

Other functionality for an ISM, while helpful but not required, includes the ability to
analyze the activity within the domain for intrusive activity. Access to this analysis by external
ISMs are made by the following requests:

• GET ANALYSIS CONN-ID <id>
• GET ANALYSIS HOST-ID <host-address>
• GET ANALYSIS SERVICE <service-name>
• GET ANALYSIS VULNERABILITY <vulnerability-id>

The first request returns a value between 0 and 100, which indicates whether or not the
ISM believes that the user owning the connection given by <id> is behaving intrusively. The

268

second request also returns a value between 0 and 100, indicating whether or not the ISM
believes that the host is associated with intrusive activity. The host does not necessarily have
to be within the ISM's domain. For example, if one ISM believes it is receiving a number of
possibly intrusive connections from a particular host, it can query other ISMs as to whether
they believe the host has a hostile user on it The third request returns a value between 0 and
100 indicating the ISM's belief that service <service-name> is being used in an unusual and
intrusive manner (e.g., when the Internet worm exploited a hole in the mail service). The last
request returns a value between 0 and 100 indicating the ISM's belief that a particular
vulnerability has recently been exploited. To perform this, the ISM must have a catalog of
known vulnerabilities and signatures to detect their [attempted] exploitation. Due to the
sensitive nature of vulnerabilities, some ISMs (e.g., those at government sites) may have a
more complete listing than other ISMs (e.g., those at universities).

As an example, Figure 5 shows three ISM domains in which a single user accesses
hosts in all three domains. ISM1 is able to observe all hosts within its domain; however, the
hosts inside the second and third domains are hidden from ISMl's view. When a user
connects to ISMl's domain, ISM1 queries ISM2 for the source of the connection, and ISM2
responds that the source is external and supplies the TCP/IP definition of the connection to
ISM1. ISM1 can use this definition to query ISM3 and determine whether the source of the
connection into ISM1 is somewhere inside of ISM3.

messages ISM domains

connections

Figure 5. ISM Security Domains

5.2 ISM HIERARCHICAL COMMUNICATIONS

The ISM model also allows ISMs to be grouped hierarchically. For example, ISM1'
may monitor a domain which is divided into three sub-domains, each with its own ISM sub-
monitors. This hierarchical structure provides two major benefits. First, because the ISM1'
domain can look into its sub-domains, it can aggregate a user's activities across these sub-
domains. This functionality is provided by additional requests which can only be made by a
direct parent ISM. These requests, however, can only be answered if the ISM sub-domain
monitors support full tracking and accountability. The protocol to support these request are:

• GET NID CONN-ID <id>
• GET PATH NID <nid>
• GET VECTOR NID <nid>

The first request returns the NID associated with a given connection ID, and the NID
can be used as a key to request further information. The second request returns an NID trace
showing a user's movement throughout the domain. The third request returns a NID vector—a
list of counts representing a user's activities in different categories (e.g., number of files
opened or the number of times a specific command has been executed)—for the user in that

269

sub-domain. If a user's activities crosses several sub-domains, the parent ISM can trace all of
the user's activities by requesting the paths and vectors of the user across all the sub-domains
he crosses.

The second benefit of the ISM's hierarchical architecture is that internal structure can be
hidden from outsiders. An individual site (e.g., a university or government research facility)
may contain only a single ISM monitor (e.g., monitoring all traffic in and out of the site), or it
may contain many sub-domains, each with its own ISM, divided along department lines.
Whatever the structure, external sites can only view the site as a single ISM. The following
example illustrates this ISM encapsulation, or information hiding.

Site A is composed of three ISM sub-domains, and site B is composed of two sub-
domains. When a host in site A's third domain connects to a host in site B's first domain, site
B's first domain cannot "see" site A's domain hierarchy, so it must send all queries to site A's
parent ISM. Likewise, if site A's third domain queries site B for an analysis of the connection,
the domain must send the query to site B's parent ISM. Importantly, to protect site A's internal
structure, site A's third domain monitor performs its query through site A's parent ISM.
Otherwise, a user at site B could determine site A's internal structure by "probing" site A and
observing which internal ISMs respond to which probes. Meanwhile, site A's internal ISM
domain monitors may continue to query each other locally (see Figure 6).

connections

Figure 6. Security Domain Hierarchy

6. CONCLUSIONS AND FUTURE RESEARCH

Wide-area networks (e.g., the Internet) have grown to be large and complex, consisting
of several thousands of networks (both wide-area and local-area) and managed by a
comparably large number of organizations. Providing for coordinated network management in
such an environment is a major task—one requiring advanced technologies that utilize the
network and computing tools to assist in the management process. Nowhere does this issue
show up more than in the area of network security. Because the Internet is distributed,
evidence to identify and analyze an intrusion can be distributed over multiple sites on the
Internet Network managers at each site on the Internet must be provided with tools to analyze
the evidence of an intrusion at the site and with tools to communicate their evidence and
analysis with other managers so that the intrusion can be understood. The proposed ISM

270

design focuses on providing a distributed, intelligent, decision-support system for network
managers that would partially automate the detection of intrusions into the Internet

From an architectural point of view, the proposed ISM will make an important
contribution towards providing security and management of the Internet; it will enable various
subnets in the Internet to communicate with one another and to coordinate information in
detecting potential attacks. As the Internet becomes larger, this decentralized architecture will
avoid an information-flow bottleneck at the central processing node (funnelling point), which
would occur under a centralized architecture.

Our future work includes using the NSM as a testbed to analyze various methods of
thumbprinting. Not only are we analyzing methods with respect to resolution, efficiency, and
semantic content (see Table 1), but we are exploring the possibility of mapping one thumbprint
format into a second. For example, a government site may place a greater emphasis on high
resolution than a university site, so they would be using two different thumbprint formats.
However, if a mapping could be made from the high resolution thumbprint to the low
resolution thumbprint, comparisons and tracking could still be performed.

Other future work includes testing, refining, and extending the protocols described
here. As we move from design and testing to full implementation, we will probably find flaws
in our initial design.

Finally, we are investigating attacks against time protocols, which can in turn subvert
the effectiveness of thumbprinting.

Rfifeanag

[Den87] D.E. Denning, "An Intrusion Detection Model," IEEE Trans, on Software
Engineering, vol. SE-13, no. 2, pp. 222-232, Feb. 1987.

[Den90] P.J. Denning, ed. Computers Under Attack: Intruders, Worms, and Viruses.
New York: ACM Press, 1990.

[Dow90] C. Dowell and P. Ramstedt, "The COMPUTERWATCH Data Reduction
Tool," Proc. 13th National Computer Security Conference, pp. 99-108,
Washington, D.C., Oct. 1990.

[Heb91] L.T. Heberlein, B. Mukherjee, K.N. Levitt, D. Mansur., "Towards Detecting
Intrusions in a Networked Environment," Proc. 14th Department of Energy
Computer Security Group Conference, May 1991.

[Lun90] T.F. Lunt, et al., "A Real Time Intrusion Detection Expert System (IDES),"
Interim Progress Report, Project 6784, SRI International, May 1990.

[Sma88] S.E. Smaha, "Haystack: An Intrusion Detection System," Proc. IEEE Fourth
Aerospace Computer Security Applications Conference, Orlando, FL, Dec.
1988.

[Sna91] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, D.L. Mansur,
"DIDS (Distributed Intrusion Detection System)—Motivation, Architecture, and
an Early Prototype," to be published in Proc. 14th National Computer Security
Conference, Oct, 1991.

[Sto89] C. StoU, The Cuckoo's Egg, Doubleday, 1989.

[Vac89] H.S. Vaccaro and G.E. Liepins, "Detection of Anomalous Computer Session
Activity," Proc, 1990 Symposium on Research in Security and Privacy, pp.
280-289, Oakland, CA, May 1989.

271

Intrusion And Anomaly Detection: ISOA Update

J.R. Winkler and J.C. Landry

PRC, Inc.
MS:5S3

1500 PRC Dr.
McLean, VA 22102

(703)556-1108
winkler_vic@po.gis.prc.com

Abstract

This paper presents an overview of the current status of the Information Security Officer's
Assistant (ISOA) intrusion and anomaly detection project. Project development is nearing
R&D completion. The anomaly detection model is discussed as a layered set of interface
specifications for deriving near-real-time warnings based on analysis of audit events in a
heterogeneous network environment. Various implementation features of the ISOA are
also discussed; these include: monitoring structures, the statistical approach, and the user
interface. The monitoring structures of die ISOA support a hierarchical analysis and flow
of data from raw audit events through perceived security situations and the automated
generation of warnings based on monitored sessions.

Introduction

This paper presents an updated theoretical and functional overview of the ISOA, which is
nearing completion of the R&D cycle. A number of versions of the system are currently
installed and used outside of the laboratory. Developed since 1985 by our Research and
Development staff, the ISOA is a state-of-the-art system for automated intrusion and
anomaly detection. The ISOA was designed to serve as a harness for both existing and
emerging techniques and technologies. A number of innovative features in the current
version of the ISOA prompt us to submit this paper.

Typically, security monitoring of user activities—along with detection of anomalous
behavior—can be based on analysis of audit and transaction data generated by operating
systems, data base management systems, etc. The huge volume of this data mandates
automated analysis because manual examination of the audit trails is too slow and
consequendy too costly. If automated analysis tools are unavailable or deficient, audit trails
are typically ignored until after a violation has been detected and, usually, some damage has
been done. The ISOA can support both real-time and batch analysis to identify unusual
and/or suspicious behavior. The ISOA addresses the following specific needs:

• Reducing the storage volume for audit data;

• Timeliness of automated audit analysis;

• Ease of use with minimal user involvement;

• A robust model for security monitoring;

• Simplified porting to fundamentally new environments;

copyright 1992 PRC Inc. 212

• Ability to respond to an evolving variety of threats and situations.

The ISOA is capable of detecting insider threats, intruders, and suspicious transactions.
Detection of suspicious transactions involves identifying specific transaction parameters
that are either inherently suspicious, suspicious due to an observed level of activity, or
suspicious in the context of other parameters.

A typical target environment can consist of a combination of audit-generating hosts,
servers, and workstations. Individual workstations may or may not generate audit records
for analysis. In addition to security relevant audit records, the monitored environment will
most likely also generate a variety of additional records of activities. These will typically
include system accounting information and, potentially, transaction logs or records. These
additional sources of security relevant information often are necessary to achieve a broader
perspective than can be derived from audit trail analysis.

Anomaly Detection Model (ADM)

The authors propose that in the field of intrusion/anomaly detection we are lacking a
scalable methodology for collecting, analyzing, representing, and processing audit
information. Although various intrusion detection systems exist today
[1,2,3,4,5,6,7,8,9,10], our experience and/or knowledge of these leads us to believe that
typically they were designed for specific environments. This tends to make adapting or
porting existing systems to new target environments a time consuming effort, possibly
entailing significant software changes.

Our survey of the literature indicates that existing intrusion and anomaly detection systems
have been implemented without benefit of a sufficiently general underlying conceptual
model. While we do not contest the importance of the seminal work performed by the
implementors and researchers in the field [1,2,3,4,5,6,7,8,9,10]—indeed we are
indebted—we have found that these systems include fundamental and common levels of
data mapping and data analysis. We have organized these into a model for intrusion and
anomaly detection, the Anomaly Detection Model (ADM). The ADM defines various
stages and aspects of processing audit data; it defines a hierarchical analysis strategy; and it
links its results back to the collection level. We present our model, the ADM, as an
extensible framework for intrusion/anomaly detection. Figure 1 depicts the various levels
of processing in the ADM, these are:

• Data Collection: Audit records (along with other security related information
regarding monitored assets) are made available to the monitoring entity. Activities are
limited to collecting, converting, and registering raw audit records.

• Data Organization: At this level the collected data are organized in such a way as to
facilitate further processing. Event data are categorized and associated with the
appropriate internal mechanisms. Basic statistical accumulations are computed.

• Synthesis: Various kinds of measures and intermediate results are derived from the
outputs of the previous level. This can involve various statistical techniques, neural net
filtering, genetic algorithms, etc. Many activities at this level may be done periodically
rather than every time an event record is received, thus enabling the use of more
complex processing techniques while maintaining adequate throughput to keep up with
the rate of incoming data.

273

• Assessment: At this level, the outputs of any and all previous levels are assessed to
determine their security implications, i.e. the meaning of lower-level information is
determined. This task is appropriate for a rule-based or knowledge-based expert
system.

* Response: Based on the results of lower processing levels, the system responds
appropriately to the current situation. The chief types of responses are feedback,
warning, reporting, and countermeasures. Feedback can control processing at any
lower level of the ADM—for example: increase audit granularity or depth of analysis,
or initiate automated proactive investigation.

Indicators

Explanation
Criteria

Gauges

Threads

Information

Activities

Figure 1 — The Anomaly Detection Model (ADM)

Incoming data are translated and analyzed in various ways as they flow upward through the
ADM levels. Thus a large volume of raw data introduced at the bottom level is transformed
into a manageable volume of meaningful information; the security implications are
assessed, and appropriate responses are triggered.

The ADM provides a methodology for deriving meaning from the vast number of related
and unrelated events which arrive over time. In an implementation, this entails maintaining

274

an abstract view of the current security relevant activities of each monitored entity (e.g.
host, user, process).

Intelligent control of the audit analysis process by feedback mechanisms provides for
efficient utilization of the available processing capacity. Analysis can be focused on
monitored entities currently having higher security concern levels, thereby increasing the
probability that a threat will be detected. Conversely, unnecessary processing can be
avoided where it is unlikely to yield valuable results.

In summary, data must be collected and organized to facilitate further processing and
interpretation. Analysis can be performed in a variety of dimensions. At the lowest level,
it is necessary to recognize the occurrence of outright violations. At higher levels, one can
perform statistical and rule-based analyses. Results from lower levels are made available to
higher levels, resulting in an evaluation of the significance of the information—and an
appropriate response.

Monitoring Structures

In the ISOA implementation, we use a series of linked structures which dynamically store
information about monitored entities. These structures are identified on the right side of the
ADM pyramid as:

• Threads— directly record events related to a particular monitored session;

• Gauges — defined as sets of numerical registers, with at least one set per currently
monitored entity. Each currently monitored session has an associated set of gauges
which store the current numerical values resulting from analysis. (Gauges are
discussed further below);

• Criteria — boolean interpretations of gauges. We use the term criterion to refer to a
distinct event or analysis sub-product, with each criterion having some expected,
current, and trigger value;

• Indicators — a given criterion can be included in multiple indicators in the form of a
simple or complex logical expression. Indicators include action lists which are invoked
when indicators are triggered.

Numerical results of analysis are represented by a set of gauges, allocated to each entity
being monitored. Each gauge represents some kind of quantitative information about a
session component (an event type, a set of event types, or some statistical analysis of a
session component). Gauges are continually updated by various ISOA processes,
providing a representation of current and recent activity. Each gauge is owned by a
particular process, which updates it. Any other process can use the value of the gauge in
its internal computations. For example, one process can update a gauge used as a counter
for file accesses, and another process can subsequently read the file-access count gauge,
derive statistical measures from it, and post its results in other gauges. Because gauges are
stored in shared memory, these exchanges are highly efficient.

The gauge representation allows information from different sources and with totally
different meaning to be handled in a standardized manner for compatibility between the
different processes. Any or all of the gauge definitions can be changed in order to tailor the
ISOA to the environment being monitored.

275

Criteria are defined to reference gauges and define interpretations of the gauges for use by
the expert system component of the ISOA. Any gauge may be referenced by multiple
criteria, each defining a different interpretation of the significance of the current value of the
gauge. A given criterion is triggered when the value of the gauge satisfies a condition
specified in the criterion definition, such as exceeding a threshold value.

Likewise, one or more criteria are associated by a rule structure in an indicator definition,
which is evaluated as a boolean combination of the current states of the component criteria.
The state of a given indicator is a function of the state of its set of criteria. An indicator is
triggered when the condition defined by its rule is true.

Some criteria and indicators may remain in the triggered state for a predefined period of
time; others may be reset when trigger conditions are no longer true.

The complete set of criterion and indicator definitions constitutes a rule base which is used
to interpret audited events as they occur. The states of the criteria and indicators for
individual monitored entities serve as flags representing the current security status. At the
lowest level we analyze raw audit records, while at successively higher levels we examine
related events, sequences of events, sessions, and trends. The use of gauges, criteria, and
indicators facilitates mapping analysis products from lower levels of the hierarchy to the
highest levels.

Statistics

In order to reduce the computational load of statistical calculations, we have been
investigating statistical techniques which minimize the amount of processing required for
each and every audit record as it is received. We register the occurrence of the event when
the audit record is received, and then periodically update other statistical measures based on
the information recorded when the audit record was received. This approach allows the
system to handle a greater volume of audit data, because the more complex statistical
analysis tasks are spread out at wider time intervals. The frequency of statistical updates
can be tuned to the needs of a particular installation. If the audit volume is not very great, a
higher frequency can be used to enable quicker response to potential threats. If the volume
is high, a lower frequency can be used to reduce processing overhead.

The most basic kind of statistical analysis involves counting the occurrences of various
types of events in the audit stream and measuring rates of occurrence. All information
indicating occurrence of discrete events is analyzed similarly. The same method can also be
applied to some other kinds of information, if the value is monotonically increasing or
decreasing (e.g. cpu usage). ISOA calculates short-term and long-term rates of occurrence
with respect to user connect time. Other reference scales might also be used, such as host
up-time. The rate measures may then be compared (at the criterion level) with stipulated
thresholds or with historical frequency distributions.

Time values used for statistical calculations are obtained from the audit stream rather than
from the ISOA system clock. Because of this, it is possible to replay a stored audit trail
and run the same statistics program that is used during real-time monitoring, even though
the replay can proceed as fast as the processing capacity of the ISOA will allow.

Statistical values are recalculated at a frequency low enough to avoid excessive processing
overhead, yet high enough that significant anomalies will be detected soon after they occur.
This frequency is tuned to the needs of a specific installation.

276

Values of statistical measures for each user are periodically written to disk files (minimally,
at the end of each session). At the beginning of a session, the appropriate values are loaded
from the disk file to initialize the data structures used in the statistical computations. Thus,
it is possible to perform real-time session analysis, based in part on previously monitored
sessions, derived measures, and so forth.

Exponentially Weighted Rate Measures

Rate measures are calculated by an exponential formula which gives more weight to recent
events than those in the more distant past. Each rate measure is based on a half-life; the
reciprocal of the half-life is the data decay rate. The half-life is the length of time in which
the rate measure will decay to half its current value if the associated event does not occur in
that time. This is similar to a technique used by IDES [4,9,11]; however there are a
number of differences. In the ISOA, we are using multiple rate measures for the same
event type, each having a different half-life. If the event type in question occurs at a
constant rate, all rate measures for that event type, regardless of half-life, will eventually
stabilize at the same value, indicating the rate of occurrence of the event. Rate measures
with short half-lives will respond quickly to short-term changes in the rate of occurrence of
the associated event; those with long half-lives will give an indication of the average rate
over a longer period of time. The system is normally configured to use the same set of
half-life values for every audit event type. This enables direct comparison between rates
for different event types and for different users/hosts. The rate measures are expressed in
units that are meaningful to a human analyst—normally number per hour. This is helpful
for interactive investigation of suspicious situations. Also, since the rate measures are on
the same scale, regardless of the half-life, they are directly comparable. Thus, a simple
graphic display of the set of rate measures for a particular event type can give the ISO an
instant picture of the recent history for that event type (figure 2).

>

Short Term Long Term

Rate Measures

Figure 2 — Rate Measure Graph

Event Sets

Since we use multiple rate measures, the short-term ones are a very specific indication of
current activity, say, within the last minute. By comparison, in a system based on a single
rate measure for a given event type, the half-life must be adjusted to take into account a
much greater amount of time; otherwise the erratic behavior of the measure would make it
useless. In the multiple-measure scheme, we actually exploit this erratic behavior by
comparison to less erratic measures (with longer half-lives).

277

Use of two rate measures with very short half-lives, such as one minute and two minutes,
enables a powerful fuzzy-logic correlation between different events. If we look at a
short-term rate measure compared to the next longer term measure, a ratio greater than one
indicates a recent increase in this measure. The set of event types showing an increase at
any given time represents a particular pattern of user activity. These patterns can be
represented as bitmaps, which makes comparisons very efficient. We would expect that
only a small fraction of all the possible patterns would actually be represented. We can
keep track of which patterns have actually been observed for each user. Also, we can
distinguish between patterns which have simply been observed in the past and those which
are administratively recognized as normal. In other words, a pattern should not
automatically be considered normal just because it has been previously observed. Also, a
completely new pattern need not generate a warning immediately; instead, it can trigger
selective automated analysis in order to determine whether a warning is warranted.

Here is a more formal description of the set computation: Let Ei, E2,...Em be event types.
For each event type, let Ri, R2,...R„ be rate measures, from short-term to long-term. Let
Qy be the quotient Rj / Rj. Let St be the set of event types E, such that Qi,2 > 1 at time t.
Now let S' be the set of all sets St for a given time range. S' is the pattern described
above.

If all possible sets St were actually observed, S' would be the power set of the set of all
event types. This set would be extremely large for large m (cardinality 2m). We expect the
actual S' to be comparatively small. If it does grow too large, it can be pruned by
eliminating event sets which have been very rarely observed. If pruning is implemented,
we expect to provide for manual override to prevent pruning of specified event sets.

Trends

Using multiple rate measures with different time scales provides a constantly updated
indication of the trend of a measure. For instance, if the short-term measures have larger
values than the long-term ones, there is an upward trend. Normally we would expect
substantial fluctuation in short-term measures, with the magnitude of fluctuation decreasing
with increasing half-life. Suppose we have rate measures Ri, R2,...Rg with half-lives of
1, 4, and 15 minutes, and 1,4, 16, 64, and 256 hours (roughly increasing by multiples of
four). Rg has the longest half-life, so it represents the average rate over the longest time
interval for which we have information. Normally, R7 might be somewhat higher than Rg,
but then R6 might be lower, R5 still lower, R4 higher, etc. However, if we found R7
higher than Rg, R6 still higher, R5 higher than that, etc., we could tell that there has been a
steady upward trend.

Of course an exception to this interpretation must be recognized in the case where we start
the system with all rate measures having zero values, for instance because we do not yet
have a basis for an expected average value to use at startup. In this case, we have to keep
track of how long we have actually been computing the rate measures, and perhaps
extrapolate to produce synthetic values for long-term measures. This could be done
efficiently by means of a formula or table yielding a percentage adjustment figure based on
the half-life and the actual time base of observed events.

278

User Interface

The user interface supports the display of audit-record-derived information in both textual
and graphical representations. The chief elements are:

• Overall system control: system control, system mode, system feedback (located at the
top of the display);

• Graphic network representation: security status display (located at mid-left of the
display);

• Audit traffic window: raw audit record display with various text search capabilities
(located at the mid-right of the display);

• Intervention capabilities: user id prompt, host prompt, etc (located horizontally under
the main system control area of the display);

• Analysis feedback and control: expert system feedback and user-directed control
(located at bottom left of the display);

• Statistics, plot and data visualization (located at bottom right of the display);

Within each of these windows, various lower-level functions are accessed via pop-up
windows and information displays. This approach facilitates user/system interaction,
reduces complexity, and allows the integration of further capabilities. The lower-level
facilities available to the ISO include the profile editor and rule editor. The profile editor
permits the ISO to specify expected behavior parameters at the granularity of a single host
or user. The rule editor allows dynamic modification and definition of rules.

At any time during audit analysis and security monitoring, the current perceived security
status of all hosts and sessions is represented by a graphical display of the monitored
network. This window, the GRAPH display, is color coded to provide a clear indication
of the highest level of concern for all sessions on a given host. A black GRAPH display
indicates no activity, green indicates acceptable activity, yellow indicates a low-level
warning, and red indicates cause for serious concern. In addition, the ISO can open a
pop-up display window for each monitored host. This dynamically updated window gives
a detailed synopsis for each user session for that host.

Analysis of suspected security threats requires easy access to various kinds of data, such as
file statistics, command usage statistics, and profile threshold values. A graphical display
capability is virtually mandated by the importance of recognizing patterns and relationships
in the data. To meet this need, a data plotting utility has been developed for the ISOA.
While the user interface and plotting is done by a separate process (PLOT), the data
collection for plots may be performed by other processes, which then pass the data to
PLOT via shared memory. Mouse-sensitive areas in the plot windows allow the user to
selectively display additional information about parts of a plot. Textual annotation in plot
displays is thus kept to a minimum, making the graphic display less cluttered and therefore
easier to read. Dual plot windows allow comparison of related plots, or simultaneous
display of two different, possibly unrelated, plots. Each plot window has its own control
panel to select the data to be displayed.

During a typical monitoring session the ISO will periodically check the status of the ISOA's
analysis and warning capabilities. The ISO does not need to maintain visual contact with
the ISOA since a complete record of warnings and generated analysis information are

279

recorded in a scrollable window for review by the ISO. The end result of anomaly
resolution is presented to the ISO in the form of a graphical alert with system generated
advice and an explanation as to why the expert system has set the current security concern
level. The graphical interface includes numerous other windows for monitoring audit
traffic, directing control of the ISOA system, and effecting direct control of monitored user
sessions and hosts. When monitoring indicates anomalous activity on a given host, the
ISO can obtain more in-depth information by selecting a graphical representation of that
host. As described previously, graphical representations of monitored hosts are color
coded to depict their current security status.

Conclusion

The ISOA has been under development for the past five years. At this time we are
completing our R&D development efforts. Current activities include restructuring the GUI
layer to ease porting to different window systems. The ISOA currently runs on Sun
workstations under Sunview and IBM RS6000 platforms under Motif. The same software
can be moved to other UNIX platforms with minimal changes. The system consists of
some 50,000 lines of 'C\ and includes no third party software. Currently, the ISOA is
running in three environments, two outside our R&D development facility.

At this time we are tracking various trends in the intrusion and anomaly detection
community, including initial prototype efforts in applying neural network technology to this
problem area. We believe that the fundamental difficulty in the intrusion/anomaly detection
area is in the generation of meaningful audit information by operating systems and
applications environments. We also recognize the utility of incorporating
non-security-domain information such as network traffic analysis and accounting and
systems information generated by most operating systems. Requirements for security
monitoring will most certainly vary among different environments. We look forward to the
availability of a variety of tools which are capable of cooperating and can be combined to
monitor and analyze behavior in complex network environments.

References

[1] Anderson, J.P. 1980. "Computer Security Threat Monitoring and Surveillance".
James P Anderson Co., Fort Washington, PA, April 1980.

[2] Denning, D., "An Intrusion-Detection Model", Proceedings of the 1986 IEEE
Symposium on Privacy and Security, April 1985.

[3] Bishop, M., "A Model of Security Monitoring," Proceedings of the 5th Annual
IEEE Computer Security Applications Conference, December 1989.

[4] Lunt, T.F., "Automated Audit Trail Analysis and Intrusion Detection: A Survey",
Proceedings of the 11th National Computer Security Conference, October 1988.

[5] Bauer, D.S and Koblentz, M.E., "NIDX - A Real-Time Intrusion Detection Expert
System", Proceedings of the Summer 1988 USENDC Conference, June 1988.

[6] Halme, L. R. and Kahn, B. L. 1988. "Building a Security Monitor with Adaptive
User Work Profiles." Proceedings of the 11th National Computer Security
Conference, October 1988.

[7] Sebring, M. M., Shellhouse, E., Hanna, M. E., and Whitehurst, R. A. 1988.
"Expert Systems in Intrusion Detection: A Case Study." Proceedings of the 11th
National Computer Security Conference, October 1988.

[8] Vaccaro, H.S., and Liepins, G.E., 1989. "Detection of Anomalous Computer
Sessions Activity", Proceedings of the 1989 IEEE Computer Society Symposium
on Security and Privacy.

280

[9] Lunt, T. F., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D. L., Neumann,
P. G., Javitz, H. S., and Valdes, A. 1988. IDES: The Enhanced Prototype, A
Real-Time Intrusion-Detection Expert System. SRI-CSL-88-12. Menlo Park, CA:
SRI International, Computer Science Laboratory.

[10] Clyde, A.R., "Insider Threat Identification Systems", Proceedings of the 10th
National Computer Security Conference, September 1987.

[11] Lunt, T.F., Tamaru, A, Gilham, F., Jagannathan, R., Jalali, C, Neumann, P.G.,
Javitz, H.S., Valdes, A., Garvey, T.D., 1992. "A Real-Time Intrusion Detection
Expert System (IDES)—Final Technical Report", SRI International, Menlo Park,
CA, February, 1992.

[12] Dias, G.V., et. al., "DIDS (Distributed Intrusion Detection System) - Motivation,
Architecture, and An Early Prototype" Proceedings of the 14th National Computer
Security Conference, October 1991.

281

ISSUES IN THE SPECIFICATION OF
SECURE COMPOSITE SYSTEMS

Judith Hemenway Dan Gambel
Grumman Data Systems Grumman Data Systems
4015 Hancock Street 2411 Dulles Corner Park
San Diego, CA. 92110 Herndon, VA. 22071
Hemenway@dockmaster.ncsc.mil Gambel@dockmaster.ncsc.mil

1.0 Introduction

This paper presents a number of issues in the specification of secure composite systems which have
emerged from our efforts to design and build secure distributed systems for "real-world" applications.
These issues are identified and discussed here in order to heighten awareness of the difficulties and
complexities entailed in specifying and verifying secure composite systems, and to stimulate further
work in the area of theoretical models for system composition. In this introductory section we discuss
briefly why system composition is a significant issue, what the current state-of-the-practice is with
respect to composite systems, and why we consider formal specification to be particularly relevant to
system composition. In section 2 we present the specification issues that we have identified, provide
examples to illustrate each issue, and determine whether any of the specification approaches that we
have surveyed can be used to address the issue. Section 3 provides a brief summary and future plans.

1.1 Trends in Computing Configurations

The trend away from centralized computing systems to distributed systems is firmly established in both
the commercial and Government domains. In addition, the need to minimize development and
maintenance costs has led to increased efforts to utilize existing commercial off-the-shelf (COTS)
equipment wherever possible. As a result of these two trends, it is apparent that many future computer
systems will utilize networks to integrate COTS components from multiple vendors. Secure applications
will need to incorporate COTS component level TCB technology. The use of multilevel secure (MLS)
workstations to provide graphical user interfaces will be widespread, as will be the use of distributed
MLS servers which support a variety of distributed processing.

Secure commercial and military system components are increasingly available. Worked examples of
multilevel operating systems, database management systems, and local and wide area networks can be
found in the open literature. The NCSC's Evaluated Products List contains approximately 10 entries
that have received B- or A-level ratings, and approximately 10 additional products at the B-level or
above are currently undergoing design analysis or formal evaluation. Today, the critical missing
technology is the ability to create a composite system, using as components a heterogeneous collection
of existing products, only some of which may be secure themselves.

1.2 Current State-of-the-Practice

Although, as noted above, there are an increasing number of secure products available at the B-level
or higher, there are as yet very few worked examples of composite systems which incorporate such
products. For the purposes of this paper, we have chosen two example systems for which the authors
participated in design and implementation. These systems serve as examples to illustrate points made
in the remainder of the paper. The two systems chosen for discussion are Network Reference Monitor
(NRM), a wide-area network targeted at the A1-level [Fell87], and Headquarters System Replacement
Program (HSRP), a C2-targeted data processing system integrated from COTS components, and
designed to be migratable to B-level assurance [Gamb90].

The NRM system provides MLS end-to-end encrypted communications across a packet-switched

282

network. NRM comprises three types of components: a centralized access control center, a centralized
key generation and distribution facility, and a set of network front-ends, one for each host connected
to the network. In NRM's view, the subjects are the subscriber hosts, and the objects are the
crypto-connections between pairs of hosts. Both multi-level and single-level hosts are permitted, but
all connections are single-level. Each NRM component consists of a general-purpose MLS operating
system supporting a collection of special-purpose processes, some of which are trusted. The trusted
processes may be either single-level or multi-level with respect to the operating system. Thus, each
component has its component-local Trusted Computing Base (TCB) consisting of the operating system
and some of the trusted processes, and the system or network TCB (NTCB) consisting of all of these
local TCBs plus the remainder of the trusted processes. In this context, "trusted" process means one
of three things:

1. With respect to the local OS, the process must handle multi-level data.
2. With respect to the local OS, the process is single level but performs some
security-relevant function for the local TCB (auditing, for example).
3. With respect to the local OS, the process is single-level but performs some security-
relevant function for the NTCB.

It should be noted here that much of the security-relevant data and decision-making for the
system-level security policy is contained in the special-purpose processes of the components, rather than
in their operating systems. It should also be noted that the NRM components were all developed from
scratch, concurrently, by one vendor, so it did not suffer from some of the multi-vendor
incompatibilities to which composite systems are prone. However, although it was developed as a
system (the "single trusted system view" of the Trusted Network Interpretation [TNI87]), it is designed
to fit as a component in larger systems (the "interconnected accredited AIS view"), where
incompatibilities are quite likely to occur.

The HSRP system is a true composite trustworthy system, in that it is composed of a collection of
three types of components developed by different vendors: a set of single-level mainframes which
provide discretionary access control (DAC) enforcement, a MLS terminal multiplexor, and a centralized
authorization center in a local area network (LAN) environment. In this system, with respect to the
mandatory access control (MAC) policy, the subjects are individuals sitting at the terminals, and the
objects are the single-level mainframes. Both the terminal multiplexor and the authorization center
components are composed of a general-purpose MLS operating system and a collection of
special-purpose processes, some of which are trusted. Again, there is a distinction here between
component-local TCBs, and the overall NTCB.

The composition of the HSRP system can be viewed as occurring in three stages. In stage 1, a
collection of software components (some COTS, some newly developed) is integrated to form each type
of physical component (mainframe, terminal multiplexor, and central authenticator). In stage 2, the
physical components are combined (conceptually) to form the Mandatory (M), Discretionary (D),
Identification (I) and Audit (A) components of the TNI. Here all the mainframe components together
form a TNI DIA component, the terminal multiplexors together form an MA component, and the
central authenticator provides an IA component. In stage 3, the DIA, MA, and IA components are
composed to form the overall HSRP system which provides all four functions. Alternatively, stage 2
could be viewed as an individual function composition, such that portions of the mainframes are
composed to form the D function, portions of the terminal multiplexors to form the M function,
portions of the central authenticator and mainframes to form the I function, and portions of all three
(mainframes, terminal multiplexors, and central authenticator) to form the A function. In stage 3, then,
the four separate functions are combined to form a complete system.

1.3 Role of Specification

The role of formal specification and verification in the development of secure systems has, over the
past two decades, gradually progressed from a research topic, to application on small monolithic

283

systems, to occasional use as a real development tool on large-scale real-world systems. Wide-spread
acceptance of formal methods has not yet been achieved, in part due to the expense of using such
techniques, and in part due to misperceptions of what such techniques can actually do. The assumption
of the TCSEC is that formal methods provide additional assurance above and beyond the assurance that
can be achieved by more traditional software engineering methods, and that such methods are highly
desirable where high levels of assurance are required. Thus, a formal security policy model is required
at and beyond B2, while at the A1 level a formal top-level specification is also required.
Our experiences with formal methods on a number of system development and integration efforts
support the value of formal methods. We have found that their use encourages more rigorous thinking
very early in the design process, resulting in identification and resolution of potential design problems.
We have also found formal methods useful during implementation as an additional means for
identifying both security-relevant and non-security-relevant implementation errors, during both code
walkthroughs and testing.

Given the current trend toward networks of COTS components, it is clear that future secure systems
will be increasingly complex due at least in part to their distributed nature, thus introducing potentially
increased vulnerability to both accidental and malicious threats. It is within this context that we think
formal methods can and should be applied as one means of controlling the increased complexity, and
minimizing potential vulnerabilities. Considerable research is currently being conducted in the area of
composition of systems/specifications. As part of this study, we have surveyed this research and
identified a number of approaches that we consider applicable to the problems that we face as
integrators of secure systems. In the next section of this paper, we explore what problems there may
be in trying to apply these approaches to real-world system composition efforts.

2.0 The Issues

The approaches we have surveyed provide a wealth of concepts and viewpoints relating to the
specification of distributed systems. The approaches differ with respect to how system components are
inter-related and composed, what properties may be expressed and proven for the resulting system, and
whether the overall viewpoint of the specification is external (i.e., descriptive of the interface) or
internal (i.e., descriptive of internal states).

In the discussion below, we describe a set of issues which have been identified in the course of our
experiences in specifying secure distributed systems. For each issue, we provide a description of the
issue, one or more illustrative examples, and a discussion of how the issue might be addressed using
particular specification approaches.

2.1 Component Roles

The functions performed by a TCB include not only access control decisions, but also maintenance of
the data related to access control (e.g., user IDs and clearances, access control lists, object labels, etc.),
user identification and authentication, and auditing of security-relevant events. In a distributed TCB,
such functions and data may be replicated across the components of the system, or partitioned among
the components.

Replication across components: In the NRM system, the ID and security range of each subscriber host
(subject) are maintained both on the access controller component, and on the front-end component
which attaches the host to the network. In HSRP, establishing the identity of a user for DAC purposes
is performed by each mainframe that a user logs onto.

Partitioning among components: In NRM, the current access set consists of a list of currently active
crypto-connections. Since each front-end component maintains a list for only those crypto-connections
where its host is one of the end-points, this means that the current access set is partitioned among the
front-end components, as is the access control decision-making for the use of those connections. In

284

this arrangement, the access controller component performs the function of granting access (i.e.,
establishing the connection), while the front-end component controls the use of the connection. A
different type of partitioning is illustrated by the HSRP system. Here, the central authenticator
performs identification and authentication functions, while the terminal multiplexor performs the MAC
function, and the mainframes perform DAC. This is the type of partitioning of function that is
addressed in the TNI, with its M, D, I, and A components. As another example, in the HSRP system,
DAC is partitioned among the mainframes, with each mainframe having its own set of named objects
to which it controls access, based on the user's identity.

In a somewhat more complicated example in HSRP, a terminal profile table is partitioned among the
terminal multiplexors, with each multiplexor having profiles for only those terminals attached to it, but
the central authenticator maintains a complete table of profiles for all terminals. Thus, here we have
a combination of partitioning and (partial) replication.

Specification Implications: Replication of data across system components requires the implementation
of some mechanism(s) to ensure consistency of that information. Replication of function may also
require some means of ensuring consistency: for example, it may not be consistent with the overall
policy for one component to permit a user to write above his/her clearance level, while another
component does not permit such "write-ups". Partitioning of data typically does not require any
consistency mechanisms, but it would be desirable in the specification to have some means of
describing how the whole is partitioned (or how the partitions are composed). Partitioning of functions
(particularly in the sense of the TNI) typically requires the establishment of protocols by means of
which the various components can exchange information and coordinate their actions.

It would appear that the specification of component roles in distributed systems involves two
requirements: the ability to specify protocols for maintaining consistency and coordination among
components, and the ability to specify partitioned data. Protocol specification has been addressed in
work such as Hailpern and Owicki's [Hail80]. As for the composition of partitioned data, the concept
of state expansion discussed by Abadi and Lamport is a possible solution [Abad90].

2.2 Inter-Component Dependencies

Shockley [Shoc90] provides a definition of domain (component) "dependence", and observes that two
components may be either independent, mutually dependent, or unilaterally dependent with respect to
some set of correctness criteria: Given two domains, dA and dB, specifications of their interfaces, sA
and sB, and demonstrations of implementation correctness, vA and vB, Shockley asserts that "Domain
dA 'depends (for its correctness)' on domain dB if and only if the arguments within vA assume (in
whole or part) the correctness of the implementation of dB with respect to sB as a premise." This
definition has also been adopted in the TDI as the definition of TCB subset dependence (i.e., TCB
layering). Note that where more than two components are involved, unilateral dependence may be
either circular or strictly hierarchical (partial ordering).

Independent components: In NRM, the front-end components are all independent of each other with
respect to enforcement of the security policy. That is, no front-end component depends on any
property provided/enforced by any other front-end component in order to enforce the security properties
correctly. A similar situation occurs in HSRP, where the mainframes are independent of each other
with respect to enforcement of DAC, and the terminal multiplexors are independent of each other with
respect to enforcement of MAC.

Mutually dependent components: For the NRM system, the access controller and the key distribution
components are mutually dependent: the access controller depends on the key distribution component
to provide keys for only those connections that the access controller has approved, while the key
distribution component assumes that the connections it has been directed to provide keys for are valid
connections (with respect to the security policy). Note that, for each established connection, the
front-end components at each end of the connection are mutually dependent with respect to successfully

285

providing communications between their attached hosts (a service assurance policy) while, as noted
above, they are independent with respect to MAC enforcement. In the HSRP system, mutual
dependence exists between each terminal multiplexor and the central authenticator: the terminal
multiplexor relies on the authenticator to perform identification and authentication of users and to
calculate the range intersection for a user-terminal pairing, while the authenticator relies on the terminal
multiplexor to determine the user-terminal pairing and to permit access only to authenticated users.

Unilaterally dependent components: Each front-end component in the NRM system depends on the
access controller to provide the ID and security range of the host attached to the front-end component.
In HSRP, each mainframe depends on the terminal multiplexor to supply the user's login ID. In both
of these examples, the dependence is strictly hierarchical. Another example, in both NRM and HSRP,
is the dependence of the trusted processes on the services provided and properties enforced by the
underlying operating system (a classic example of TCB layering). We elaborate further on this concept
in section 2.6 on secondary/supporting policies.

Specification Implications: Communications protocols play an important role in distributed systems,
not only for user communication, but also for communications among the distributed portions of the
NTCB. The typical protocol "stack" represents a strictly hierarchical component structure, where each
protocol layer is a component. In this case, dependence is similar to Lam and Shankar's (see
[Lam91a] and [Lam91b]) concept of linear hierarchies of modules in which a module "uses" the
interface of a lower module, and "offers" an interface to a higher module. (Note also, however, that
the peer entities in a protocol stack may be mutually dependent.) In addition to protocol specification,
an approach such as Lam and Shankar's may be very suitable for situations such as those addressed
in the TDI (where the concern is for incremental evaluation or "evaluation by parts"), and for
extensible architectures such as described by Schaefer and Schell [Scha84]. Hoare's CSP [Hoar85]
permits both sequential composition (unilateral dependence) and parallel composition (mutual
dependence and independence), as does the Abadi-Lamport Composition Rule [Abad90].

2.3 Granularity of Elements

It is frequently the case within distributed systems that the granularity of both subjects and objects is
widely variable across components, and, further, that the subjects or objects of one component must
be maintained or controlled in some specific relationship (including a relationship of labels) to the
subjects or objects of other components.

Subject granularity: In the NRM system, the subjects are the hosts attached to the front-end
components. However, it is quite likely that when NRM is installed as the network component of
some system consisting of a collection of MLS hosts, the granularity of subjects on each host will be
individual processes. Thus, what is a single subject from the point of view of the NRM security
model is actually a set of subjects from the point of view of the model for the enclosing system. A
somewhat different situation occurs in HSRP, where the subjects are processes on the terminal
multiplexors and on the mainframes. In this instance, it may be desirable to have a way of expressing
the fact that subjects A and B on the terminal multiplexor, and subjects X, Y and Z on the mainframe
are all related in that they represent the same user, operating at the same security level. We call such
a relationship a "federated" or "session" subject.

Object granularity: In the NRM model, the objects are the crypto-connections between pairs of hosts,
and sending a message via a connection is considered "modifying" (in Bell La Padula terms) while
receiving a message is viewed as "observing". An alternative model could view crypto-connections as
containers, with messages being the elementary objects contained in the connections. Such an approach
would be similar to the compound objects defined in the MMS model [Land84]. In the HSRP system,
the objects controlled by the terminal multiplexor are the mainframes, whereas the objects controlled
by the mainframes are the more traditional objects such as files, messages, segments. From one view,
this is the TCSEC difference between MAC "objects", and DAC "named objects", while from another
point of view, this is another instance of a single (container) object consisting of a set of finer-grained

286

objects.

Paradigm shift: A more subtle distinction with respect to granularity is the issue that Bell has termed
"paradigm shift". To illustrate, we return to the NRM notion of a crypto-connection as an object, with
"observing" the object being defined as receiving a message via the connection, and "modifying" the
object being defined as sending a message, as described above. A crypto-connection here is really an
abstraction, rather than a physical object, and is represented by a connection record, which is a
collection of information about the connection. This connection record is stored in a table in the
memory of the front-end component, and access to this table is controlled by the operating system of
the front-end component. Thus, with respect to the system model, a connection is an object, access
(i.e., sending and receiving messages) to which is controlled by the trusted software which resides in
the front-end component, running on top of the operating system. However, with respect to the
local-model for the front-end component, the table containing the connection record is the object, access
to which (i.e., reading and writing the table) is controlled by the operating system. There is clearly
a relationship between the two objects, but it is not a simple set/subset relationship; rather, it is a form
of unilateral dependence resulting from the layering of a NTCB process on top of a trusted operating
system (local TCB). We will return to this issue in section 2.6 when we discuss secondary/supporting
policies.

Specification Implications: Many of the specification approaches we have investigated are based on
an external view of systems and components, in which only the interface events and their associated
"ports" are visible. Of the remaining approaches, which are typically state-machine descriptions, the
MMS model [Land84] provides a form of object granularity by means of the concept of containers,
and McLean's approach ([McLe88] and [McLe90]) provides for one form of subsetting of subjects in
his definition of a subsystem. He also provides, in his framework for N-person rules, a definition of
compound subjects, where each subject is a subset of subjects. Although these approaches do not
accommodate all of the examples described here, they do provide a starting point for further work in
the representation of variable granularity of subjects and objects.

2.4 Security Labels

In composite systems, the amount of information encoded in security labels, and the particular form
of the internal representation of those labels, will quite likely vary from component to component. The
TCSEC requires a minimum of 16 hierarchical levels, and 64 non-hierarchical categories, although
some systems have implemented considerably more than that; for example, the new AT&T System V
Rcl. 4.1/ES supports 246 hierarchical levels and 992 categories. Even in situations where the number
of levels and categories is the same for two components, the meanings assigned to the various levels
and categories may differ. Reconciling such label inconsistencies during the integration of a composite
system composed of pre-existing components is a critical and sometimes very difficult task, which
typically requires the creation of a label translation/mapping function.

Another labeling issue arises in systems where the granularity of subjects or objects varies, as described
in the previous section. It may be desirable or even necessary to enforce a particular relationship
among the labels associated with a set of subjects or objects.

Label consistency: In the NRM system, all of the components were developed together, and shared
a common label syntax and semantics. It was, however, necessary to provide a conversion function
between the format used internally by the components and the format used in the IP Security Option
(IPSO) defined at the interface with the attached hosts. Any hosts that attach to a NRM controlled
network will likewise have to reconcile their own label definitions with the IPSO. Thus, the IPSO
serves as an "intermediate" label form. Although HSRP was developed as a composite system, the
architecture is such that label consistency was not an issue. This is due to the fact that all MAC is
performed by the terminal multiplexors (with support from the authenticator), all of which are
implemented on the same platform with the same OS, and each mainframe is a single-level
environment, without MAC labels. It was, however, necessary to devise a protocol for distributing the

287

semantic interpretation of the MAC labels across the terminal multiplexors and central authenticator.

Label granularity: In the NRM system, each crypto-connection is established at a single security level,
and every message that is sent or received via a connection must be at the level of the connection.
Thus, connections and messages are both labeled, and a strict equality relationship between the labels
is enforced. Since the "messages" in this system are IP datagrams, an additional labeling issue arose
due to the fact that IP datagrams can be fragmented at the next lower protocol level. In this instance,
it was decided to disallow fragmentation for multi-level hosts, rather than devising a labeling
convention for the fragments. However, such a solution would certainly be possible, and again the
relationship between datagram and fragment labels would be equality. Another illustration is in the
Compartmented Mode Workstation (CMW), where, for each object, a non-changeable "protection label"
is maintained that must always dominate a floating "information label". This is similar to the MMS
notion of container labels (the protection label) and object labels, although the CMW information label
would be equivalent to the least upper bound of the MMS object labels, rather than to the object labels
themselves.

Specification Implications: Of the specification approaches that we have reviewed, none addresses label
consistency. Only the MMS model explicitly addresses label granularity, and this is done only for
objects [Land84].

2.5 Security Policies

In a composite system, it is quite likely that two or more components will each have a stated security
policy that controls access of subjects to objects. In such systems, both issues of policy conflict, and
issues of policy composibility must be addressed.

Policy conflict: Policy conflicts arise between components if one component enforces a property which
negates or weakens the policy of another component. One example would be a system in which
component A enforces the Bell-La Padula *-property, which prohibits write-downs but not write-ups,
whereas component B enforces a policy which prohibits both write-downs and write-ups. Depending
on the particular system, this may be viewed either as a legitimate difference, or a serious policy
conflict. Another example would be a system in which one component permits owner-users to modify
the access permission matrix (the ACLs), but another component allows only the Security Officer to
do so.

A concise specification of each component's security policy permits straightforward identification of
conflicts such as these. However, analysis and resolution of the conflicts is not a technical issue, but
rather a policy issue, which must be addressed by the DAA(s) for the system. In some instances, such
policy conflicts may not be security weaknesses but rather a legitimate dual policy situation, while in
other instances, the conflicts may indeed be weaknesses, and some modifications to the policy and/or
its underlying mechanisms may be necessary as part of the system integration effort. In either case,
once such analyses have been performed, one must then address the issue of policy composibility.

Policy composibility: Even in situations where the policies of individual components do not conflict,
it may or may not be possible to compose the components into a single system with a system-level
security policy. In general, three different types of composition may be needed. The first type is
replicated policies: the same security policy is enforced in two or more components, which will be
composed to form a system. In HSRP, the DAC policy is replicated across the mainframe components,
and the MAC policy is replicated across the terminal multiplexor components. The second type is
sibling policies: similar security policies are enforced in two or more components which will be
composed to form a system. An example of this type would be a network consisting of a component
running GEMSOS, a component running trusted Xenix, and a component running AT&T System V.
The third type is a single distributed policy. NRM is an example of this type, with enforcement of
its security policy distributed across the three types of components in the system.

288

Specification Implications: McCullough [McCu88] discusses composibility for systems in which each
component enforces the same security policy (the replicated policy type of system). Even here,
composibility is not guaranteed: non-interference is not composible for non-deterministic systems, but
restrictiveness is. McLean ([McLe88] and [McLe90]) provides a framework for security policy models
in which each model is distinguished by permissiveness for changing security labels (tranquility
"violations"), which defines a form of sibling policies. It may be possible to extend this concept of
frameworks to encompass other dimensions on which policies may vary. Both the Lam-Shankar
approach ([Lam91a] and [Lam91b]) and the Abadi-Lamport approach [Abad90] permit the composition
of components with arbitrary policies, which would be of benefit particularly for the third type of
system (single distributed policy).

2.6 Secondary/Supporting Policies

Within any complex, modularized system (distributed or not), it is frequently the case that those
components which enforce the security policy depend on other portions of the TCB to supply
secondary or supporting policies. By this we mean not only such functions as auditing, but a variety
of functions and properties which become security-relevant by virtue of the fact that correct
enforcement of the security policy depends on the function or property. This situation is particularly
in evidence in distributed trusted systems. The distribution of portions of the system TCB among two
or more components of the system results in a need for communication among the components. Such
communication usually requires mechanisms to establish a TCB-to-TCB trusted path, and protocols
which provide consistency of distributed security-relevant data, and concurrency control of
security-relevant actions. Further, in those situations in which portions of the TCB are organized
hierarchically (i.e., as a layered TCB), the policies enforced by higher levels of the hierarchy frequently
depend on the "correct functioning" of lower levels.

Trusted communications: In the NRM system, the fact that both trusted and untrusted components use
the same communication medium results in the need for a mechanism that the TCB partitions can use
to authenticate themselves to each other, and to protect from disclosure or modification the
security-relevant data which they must exchange with each other. The use of pair-wise keying provides
both authentication and data protection, which means that the TCB depends on the correct functioning
of the keying protocol. In effect, encryption is the mechanism whereby TCB-to-TCB messages are
rendered tamperproof while they are beyond the protection of hardware domains. The situation is
somewhat different in HSRP, where the terminal concentrators are connected to the authentication
center via an Ethernet that is for their exclusive use. Thus, no untrusted components have access to
the communications medium, and so the need for protected communications is obviated. However, an
identification and authentication protocol among the TCB components (terminal multiplexors and central
authenticator) was implemented, primarily to protect against errors which could result in reaching a
non-secure state.

Concurrency control: As was described in section 2.1 above, certain security-relevant data in the NRM
system are replicated across two or more components. In situations such as this, it is necessary to use
a protocol (such as a two-phase commit) to control updates to the data in order to maintain data
consistency. A second example of concurrency control is the revocation of an established connection,
where the actions of two components (the end-points of the connection) must be coordinated in order
to complete the revocation. In the HSRP system, communication among the components assures that
no user can view simultaneously two or more sessions that are operating at different security levels.

Hierarchical dependence: In section 2.3 above, we described the notion of "paradigm shift" for which
the example given in NRM is that of a system level connection vs. a component level connection
record. To reiterate: with respect to the system model, a connection is an object, access to which is
controlled by trusted software which runs on top of a trusted operating system, whereas with respect
to the component model, the table containing the connection records is the object, access to which is
controlled by the trusted operating system. Thus, the higher level trusted software depends on the
correct functioning of the lower level software in order to enforce its security policy. A similar

289

situation occurs in HSRP, where the authentication of users, and the MAC access decisions are
performed by trusted software residing on top of a trusted operating system. A third example is the
Separation VMM discussed by Kelem and Feiertag [Kele91]. Note that in all three examples, part of
what the operating system does is to extend "tamperproofness" protection to include the trusted
processes.

Specification Implications: Both trusted communications and concurrency control rely heavily on the
use of protocols, for which approaches such as Hailpem-Owicki [Hail80] or Abadi-Lamport [Abad90]
are quite useful. The issues of hierarchical dependence are more directly addressed by Lam and
Shankar's approach ([Lam91a] and [Lam91b]).

2.7 Granularity of Execution

In a distributed system, actions which are traditionally modeled as atomic (uninterruptable) state
transitions may actually require a sequence of such transitions, particularly where communication across
a network is concerned. This constitutes an apparent shift in the "granularity of execution" when
comparing the system viewpoint with the component viewpoint.

One example of this issue in NRM is the action of granting access to an object. Whereas in the
traditional single-processor system, the granting of access is typically accomplished by means of a
single system call (e.g., open file), the equivalent grant in the NRM system is accomplished by means
of a protocol involving the interaction of all three types of components. Another example is updating
the security-relevant data which resides in the access control component. Since the access control
component may be replicated (e.g., for survivability), this action involves execution of a protocol
among the multiple access control components, rather than a simple "update database" system call.
Granting access (for MAC) in HSRP is similar to the situation for NRM: a dialog must occur between
the terminal multiplexor and the authenticator in order to grant access.

Specification Implications: For the specification approaches which have been reviewed here, there are
essentially two different ways of dealing with granularity of execution: either by showing the details
explicitly, or by hiding the details via abstraction. For methods such as Hailpern-Owicki [Hail80], the
protocol involved is formally specified and verified. In approaches such as Hoare's communicating
sequential processes [Hoar85], Lamport's logic of actions [Lamp90], Lam and Shankar's theory of
modules and interfaces ([Lam91a] and [Lam91b]), and the Abadi-Lamport composition approach
[Abad90], provision is made for hiding internal states of a component These two approaches are
complementary, rather than mutually exclusive, and both may be useful for any given system.

3.0 Conclusion/Summary

The issues that we have identified here reveal a picture of composite systems as richly textured and
complex structures. The specification approaches that we have surveyed vary with respect to such
characteristics as type of component organization/composition (sequential and/or parallel), properties
expressible (safety and/or liveness), and viewpoint (internal or external). Taken individually, each of
the specification issues identified is addressable to some extent by one or more of the approaches that
we have surveyed. However, no single approach addresses all of the issues that concern us.

Our efforts over the next year or two will be to develop a worked example of a composite system
specification using automated tools augmented as necessary with additional (non-automated) formal
methods. We anticipate that such an effort will necessitate a combination of an internal approach (for
expressing such issues as element granularity, label consistency and component policies) with an
external approach (for expressing component relationships, interactions and composition issues). Both
sequential and parallel composition will be necessary, but with respect to properties we will focus on
safety properties in order to provide some limit to the complexity of the system.

290

REFERENCES

[Abad90] Abadi, M. and Lamport, L. Composing Specifications. Research Report 66: Digital
Systems Research Center, October 1990.

[Chen83] Chen, B. and Yeh, R. T. Formal Specification and Verification of Distributed Systems.
IEEE Transactions on Software Engineering, Vol. SE-9, No. 6, November 1983.

[Fell87] Fellows, J., Hemenway, J., Kelem, N., and Romero, S., The Architecture of a Distributed
Trusted Computing Base. Proceedings of the 10th National Computer Security Conference, 1987.

[Gamb90] Gambel, D., Walter, S., and Fordham, M. HSRP - Al'ing a Large-Scale Management
Information System. Proceedings of the AFCEA Military/Government Computing Conference and
Exposition, January 1990.

[Hail80] Hailpern, B. and Owicki, S. Verifying Network Protocols Using Temporal Logic.
Proceedings of the IEEE Conference on Trends and Applications: 1980 Computer Network Protocols.

[Hoar85] Hoare, C.A.R., Communicating Sequential Processes. Prentice/Hall International, London,
1985.

[Kele91] Kelem, N. L. and Feiertag, R. J. A Separation Model for Virtual Machine Monitors.
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy.

[Lam91a] Lam, S., Shankar, A.U., and Woo, T. Applying a Theory of Modules and Interfaces to
Security Verification. Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy.

[Lam91b] Lam, S. and Shankar, A. U. A Composition Theorem for Layered Systems. Proceedings
of the 11th International IFIP WG6.1 Symposium on Protocol Specification, Testing, and Verification,
Stockholm, June 1991.

[Lamp90] Lamport, L. A Temporal Logic of Actions. Research Report 57: Digital Systems Research
Center, April 1990.

[Land84] Landwehr, C.E., Heitmeyer, C.L., and McLean, J. A Security Model for Military Message
Systems. ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

[McCu88] McCullough, D. Noninterference and the Composibility of Security Properties.
Proceedings of the 1988 IEEE Symposium on Security and Privacy.

[McLe88] McLean, J. The Algebra of Security. Proceedings of the 1988 IEEE Symposium on
Security and Privacy.

[McLe90] McLean, J. The Specification and Modeling of Computer Security. Computer, January
1990.

[Scha84] Schaefer, M., and Schell, R. Toward an Understanding of Extensible Architectures for
Evaluated Trusted Computer System Products. Proceedings of the 1984 IEEE Symposium on Security
and Privacy.

[Shoc90] Shockley, W.R. Dockmaster TDI_Comments forum entry #221, August 24, 1990.

291

ISSUES TO CONSIDER
WHEN USING EVALUATED PRODUCTS

TO IMPLEMENT SECURE MISSION SYSTEMS

WILLIAM R. PRICE, LT COL, USAF1

Headquarters Air Force Space Command (LKXS)
Peterson Air Force Base, CO 80914

ABSTRACT

In spite of the availability of the Trusted Computer Security
Evaluation Criteria and products evaluated against it, DOD
organizations have fielded very few operational systems that
effectively employ the offered security features. This paper
examines some of the issues that builders need to consider
when trying to develop secure systems.

1. Introduction

Although the Department of Defense Trusted Computer System Evaluation Criteria
(TCSEC) [2], the "Orange Book," has existed for almost a decade, progress toward
implementing systems based on it has been disappointing. Previous conferences have
included reports of ongoing research and development projects attempting to demonstrate
and extend computer security techniques in military scenarios. However, there have been
few, if any, descriptions of secure operational systems implemented using either TCSEC
evaluated products2 or TCSEC based techniques. The premise is that secure operational
systems do not exist in significant numbers. This paper examines why secure systems are
not prevalent despite DOD policy based on the TCSEC and the availability of evaluated
products.

This paper focuses on systems that directly support military operations. Key
characteristics of the systems of interest are:

1. The major users are from operational (e.g., flight operations, aircraft
maintenance, supply, air and space surveillance, satellite operations) rather than computer
disciplines.

2. The systems support routine processing and flow of information. Users
expect to enter and receive information in predefined formats.

3. User's have limited, if any, ability to create computer programs.

1The views expressed here are solely those of the author and not the Air Force.

2Systems employing TCSEC evaluated products but not using the security features are
dismissed. Although many DOD systems employ TCSEC evaluated products, inquiries often
reveal that systems operate without using crucial security features. A common indicator of
such a situation is a computer system security officer of an alleged class C2 system who does
not know what access control lists are or how the system uses them.

292

1.1. Objective

The point of the paper is that there has been too much reliance on over-simplified
guidance. The approach frequently used to acquire "secure" systems has been to determine
the desired TCSEC class and then reproduce or paraphrase the class description in the
system specification. The Department of Defense established a methodology for
determining the required TCSEC class based on the difference between the least cleared
user's clearance and the most classified data's classification3. The approach apparently has
not been successful. Simplistic methodologies are no substitute for thorough, quality system
engineering.

1.2. Overview

The remainder of this paper examines some of the impediments that often interfere
with attempts to implement secure operational systems. The categories of impediments
discussed are ill-behaved problems, lack of requirements understanding, and design issues.

2. Ill-Behaved Problem Domains

There are environments where operational concepts are ill-behaved (i.e.,
inconsistent) with the concepts underlying the TCSEC. In most cases, the disconnects
relate to the mandatory access controls. Mandatory controls work best in situations where
data has easdy determined, static security labels (classifications). There are situations
where data dynamically changes security labels and where the only classified data results
from the association of several pieces of information that are each individually unclassified.
Examples of dynamically changing labels include scenarios where a planned event is
classified prior to its occurrence but unclassified after it occurs. The date of a space launch
may be classified prior to the launch but unclassified at the time of launch4. There are
systems that produce classified products resulting from the association of data that is
unclassified. Security classification guides occasionally identify such circumstances. There
are guides that specify unclassified and classified associations where associations of A with
B and B with C are each unclassified but A with C is classified. There are also situations
where classified outputs result from unclassified inputs to an unclassified process.

Computer security advisors need to exercise caution in proposing TCSEC evaluated
systems in these situations. Although the required analysis would point to a B level system,
effective use of the security features, particularly the mandatory access controls, may be
difficult. Situations involving dynamic changes to lower mandatory security labels may
require manual intervention or "trusted" processes. TCSEC security features alone do not
recognize the upward classification change that should result when data associations occur.
Software must know, detect, and act when the associations occur. Evaluated product
features that allow "write ups" and support incorporation of trusted processes would reduce
development risks. Understanding the types and frequency of classification changes and
the amount of data involved are prerequisites for making sound system design decisions.

3The methodology for determining a desired TCSEC class first appeared in the "Yellow
Books" [4,5]. Subsequently, DOD Directive 5200.28 [1] and its Air Force implementation,
AFR 205-16 [3], incorporated the methodology and, thereby, made use of the methodology
mandatory.

4A space launch is often apparent to and observable by large segments of the population.

293

Before pursuing approaches needing B level evaluated products, one should explore
other alternatives such as restructuring the environment to be better behaved or pursuing
system high rather than multilevel mode approaches. In many cases the "direct" users have
clearances for all data, but there is a desire to produce unclassified products for "indirect"
users without manual review. Manual review or automated guard approaches may be more
cost effective. In one case a system processing normally as unclassified had a requirement
to perform classified processing for short periods. The system operated in a secure
environment but had unclassified external interfaces. The system received classified
information shortly before the occurrence of a classified event, but the information became
unclassified after the event occurred. Rather than attempt multilevel operation, the
solution was to operate in system high mode using periods processing. When the system
received classified information, the facility entered classified operations. Operators severed
unclassified external connections and did not release normally unclassified print products.
Once the event occurred, the system returned to unclassified operations. There was no need
for downtime to "sanitize" the system because the information was no longer classified.

3. Lack of Security Concept and Supporting Requirements

Early efforts to understand and define security requirements are essential. Simply
copying or paraphrasing the requirements found in the Orange Book for the desired class is
inadequate. Users of operational mission systems interact with mission specific software
and not with the operating system. The set of security abstractions with which users deal is
fundamentally different from the set provided by TCSEC evaluated operating systems. For
example, users of an air defense system interact with displays showing aircraft in flight
superimposed on maps, status of various air surveillance systems (e.g., radars), and the
operational status of friendly air defense units. Users do not see (and do not want to know
about) abstractions often considered important in TCSEC evaluated operating systems such
as files, memory segments, interprocess communication mailboxes, and peripheral devices.

The system security requirements have to be consistent with an understanding from
a security perspective of how users will employ the system to accomplish their mission (i.e.,
a security concept of operations) and an understanding of organizational and individual
responsibilities for security of the operational system (i.e., a security policy). Ideally,
accurate and up-to-date documents should describe the security concept of operations, the
security policy, and the system security requirements. The documents should be consistent.
Whenever one of the documents changes, there should be an assessment of the impact on
the other two. The following paragraphs address the security concept, policy and
requirements and illustrate some interactions among them.

3.1. Security Concept of Operations

The security concept of operations should identify the security issues and concerns
related to the operation of the system and describe how to ensure security in the operation
of the system. The concept should consider all security disciplines including both external
(e.g., physical and personnel) and internal (e.g., hardware and software) measures. The
security concept of operations should:

1. Describe the assumed physical environment in which the system
operates.

2. Identify security relevant groups or communities of users. Users
(individuals or groups) may have specific responsibilities and be expected to perform specific
functions. Users include both "direct" users who interact with the system and "indirect"

294

users who may submit or receive information but have little or no ability to interact with
the system. An indirect user may receive messages through "air gap" (e.g., printed reports
or tapes) or direct electronic interfaces. Users include support personnel as well as those
performing mission functions. The operations concept should include key support personnel
such as hardware and software maintainers, computer operators, data base administrators,
and system security officers (SSOs). A major issue is whether external or internal measures
will monitor and control these personnel. Operational concepts for the security officer can
have manning impacts. Particular issues are whether the security officer is a full-time
function (only duty of one or more people) or part-time (performed by someone with other
responsibilities) and whether a security officer will be present whenever the system
operates, on-call, or only available during "day staff' operations. Operational considerations
regarding expected or needed responses to attempted "hacker" penetrations or to the system
"locking out" a legitimate user who forgot a password or exceeded the allowed number of
logon attempts should guide these decisions on security officer manning.

3. Identify the data needed by and the functions required for each of the
user communities as well as any data and functions which the system should deny to them.

4. Identify security significant events and data collections.

5. Specify the degree of need-to-know (including need-to-perform)
controlled by internal measures. Of particular interest is determining the desire for need-
to-know controls refined beyond any formal access determinations. For example, there may
be information or functions that only certain individuals should perform (e.g., only the
commander can transmit messages directing the use of force). External or internal
measures could enforce such limitations.

6. Specify whether individual user identification and authentication and
user accountability are necessary. Operational concepts may not bind specific users to
specific terminals (e.g., large wall displays) or may require several individuals to use a
single terminal. Operational communities may object to individual logons particularly at
shift changes and want to substitute physical and administrative controls (e.g., crew
schedules).

7. Identify events and the amount of information necessary for individual
accountability purposes. For some security events, an audit trail entry indicating the
event's occurrence may be sufficient. However, other circumstances may require recording
specific details of the event (e.g., recording the "before" and "after" data for a write to a file).

8. Specify the length of time that audit records have to be retained and the
frequency of their review.

If mandatory access controls are necessary, the concept of operations should also
address:

1. The range of users' security clearances.

2. The range of data classifications.

3. The needed granularity of control over data.

4. The presence of information involving compartments, categories or
special caveats.

295

5. Any situations where data dynamically change classification and the
criteria for the change.

6. Operational impacts of users having to frequently change their security
level because of prohibitions against "read up" and "write down."

The discussion above illustrated the need for consistency within and among the
three documents. In several cases, tradeoffs between internal and external measures are
possible. When the operational concept calls for internal measures, the security
requirements must prescribe the desired internal measures. External controls should be
consistent with internal controls. For example, users of systems supporting multinational
defense organizations often include both United States and foreign personnel. Security
controls intended to prevent disclosure of some information to foreign nationals are not
particularly useful if a foreign national has an unobstructed view of a US user's
workstation.

3.2. Security Requirements

The overall system specification generally includes the security requirements. The
security specifications must describe the capabilities to support the concept of operations.
Security requirement authors should not simply copy the appropriate Orange Book class
description. An "Orange Book" class description can serve as guide, but substantial
adaptation is necessary. The class descriptions contain abstract terms such as subject,
object, security labels, and single-level and multilevel input/output devices. Thorough
system engineering of the security requirements is essential. The security requirements
should relate to other system requirements. These requirements, at a minimum, should
replace Orange Book security terms with terms that relate to the rest of the system
specification.

The security requirements should:

1. Identify the actions that are subject to either mandatory or discretionary
access controls.

2. Identify the security objects to which the system must control access.

3. Describe the essential components of security labels and the range of
values for each component.

4. Describe features for defining users and user groups.

5. Describe special measures for detecting and preventing "hackers" and
unauthorized access attempts. Lock outs of terminals, network ports, or userids may seem
appealing. However, there are tradeoffs. Such lock outs could cause denial of service.
Simply reporting these events to the security officer or operator may be sufficient.
Automatic logout after periods of non-use is a frequently advocated measure to prevent
unauthorized access to unattended terminals. Any such requirements should address what
should happen to ongoing processes associated with and subsequent messages destined for
the terminal.

6. Describe the SSO capabilities and related resource requirements. The
SSO's interface should be as "user friendly" as any other user's interface. Capabilities to
support the SSO's responsibilities should be as detailed as those for any other user.

296

Examples of SSO capabilities are defining and managing the access rights of individual
users, defining and managing group designations and membership, defining and changing
security labels, unlocking userids or terminals that the system locked because users
exceeded the allowed number of trials, and reviewing and analyzing audit trails. SSO
resources might include terminals or workstations, storage space for audit trails, and
processing capability to support audit trail review and analysis (particularly, if the
operating concept calls for "off-line" review and analysis).

7. Describe security measures or capabilities associated with other
"powerful" users (e.g., computer operators, maintainers, and data base administrators).

8. Identify performance requirements relative to the security features. If
the system provides the capability to select which events to audit, the specification should
identify the level of auditing in effect during general system performance testing. This level
of auditing should correspond to that planned for normal operation. The storage capacity
for audit data should be tested. If the requirements state that storage should be adequate
for audit data collected over some period of time, the test should involve a representative
"workload." Another performance issue may relate to the logon function, particularly if the
system has critical time constraints. For example, if there is a mission requirement to
respond to events within a few seconds of their occurrence, the operational community is
unlikely to accept a few minutes as the time required for a user to log on. The operational
community will include as part of logon any time required to load the application and
initialize it prior to being ready to accept inquiries from the user.

3.3. Security Policy

The security policy marries the operational concept and the system specification. It
should describe the roles, responsibilities, and duties of the individual system users and
their organizations relative to the operation of the system. The policy should require and
ensure the use of all external and internal measures necessary to satisfy the security
concept of operations. All organizations affected should participate in its preparation and
understand its impacts. Early agreement can prevent last minute surprises, organizational
conflicts, and costly changes.

4. Design Issues

In a few circumstances there are products evaluated at the same class as that
believed necessary for the desired system. Attempts to design an operational system that
effectively uses the security features can be extremely challenging. Non-security issues may
tempt system engineers to make tradeoffs that jeopardize the security of the system.
Difficulties often encountered include the lack of available higher level, secure components
(e.g., networks, data bases, windowing software, electronic mail), object granularity,
performance, and auditing.

4.1. Lack of Secure Components

Development activities are under strong encouragement to develop systems using
commercial off-the-shelf software (COTS). Unfortunately, much of this software is not
compatible with evaluated products, particularly with mandatory access controls. For
example, office automation and electronic mail systems may not work unless all users and
information are at the same security level. Attempts to operate with differing security
levels either cause errors or frustrate users because of the need to change security levels.
For example, such systems often maintain a user specific directory or data base (e.g., a

297

directory of documents or messages) which must be stored in a security object of the
evaluated product (e.g., a file). The component will not work if the user attempts to use the
component while operating at a security level other than the level of the directory or data
base.

Vendors are working on secure versions of many of these components, and some
secure components are available. However, the components are usually specific to certain
evaluated operating systems and sometimes are not easily integrated with the evaluated
products.

4.2. Object Granularity

The common belief is that designers of secure applications software could map
objects at the application level onto objects of the underlying evaluated product. The
mapping could be one to one, one to many, or many to one, but the assumption was that
mapped objects would all have the same security level. One difficulty is that the size of
objects can be grossly mismatched. Implementing "small" application objects using
evaluated product objects intended for "large" collections of data may impact performance or
force developers to augment the evaluated product with "trusted software" that essentially
implements a new type of security object.

4.3. Performance

The issues of granularity and performance are interrelated. As stated above
granularity can cause performance problems. Another performance issue that has occurred
with several systems relates to logons (i.e., user identification and authentication) in time
critical systems. For some systems, time for one user to logout and another to logon at the
same workstation (e.g., as might occur at a shift change) can take several minutes. Most of
the time is for the application to load and initialize itself prior to being ready to accept input
from the user. Often, the new user wants to resume exactly where the old user stopped.
The process of destroying the old user's ongoing activity and rebuilding the same context for
the new user seems unnecessary. A capability to change user accountability without
disrupting basic mission processing is what the operational community desires.
Unfortunately, none of the current evaluated products provide a rapid change of user
accountability.

4.4. Auditing

Auditing needs to be addressed carefully. If the security objects at the applications
level are not uniquely distinguished at the level of the evaluated product's objects, audit
trail entries of the evaluated product may be useless. The applications software may have
to provide its own audit trail of security events.

5. Conclusions

Several conclusions can be drawn:

1. Implementation of secure mission systems using evaluated products, while
potentially feasible, is non-trivial.

2. Insufficient planning for the operations concept and security requirements is
probably the major impediment to success.

298

3. The underlying security concepts of the Orange Book and techniques for
implementing secure systems are not well-understood by many developers.

4. The lack of easily integrated, secure components adds complexity and technical
risk to development efforts.

6. Recommendations

This paper has contained several detailed recommendations regarding the
development of secure systems. Because of the conclusions above, priority should be given
to identifying the security concept of operations and security requirements based on Orange
Book guidance. In military applications involving limited security risks, implementation of
the security controls in applications software rather than risky attempts to use an evaluated
product may do more to advance the eventual implementation of secure systems. While this
may be a controversial recommendation, the development of systems with proper
functionality (but without full assurance) may do more to advance secure systems than
continuing to wait for the "big bang" when a full set of secure components for building
secure systems is available. Users and developers will gain knowledge and experience
regarding the operation of secure systems.

7. References

1. Department of Defense, Department of Defense Directive (DODD) 5200.28, Security
Requirements for Automated Information Systems (AISs"), March 21, 1988.

2. Department of Defense, Department of Defense Standard: Department of Defense
Trusted Computer System Evaluation Criteria in Specific Environments,
DOD 5200.28-STD, December 1985.

3. Department of the Air Force, Air Force Regulation 205-16: Computer Security Policy.
28 April 89.

4. DOD Computer Security Center, Computer Security Requirements •• Guidance for
Applying the Department of Defense Trusted Computer System Evaluation Criteria in
Specific Environments. CSC-STD-003-85, 25 June 1985.

5. DOD Computer Security Center, Technical Rationale Behind CSC-STD-003-85:
Computer Security Reouirements •- Guidance for Applying the Department of Defense
Trusted Computer System Evaluation Criteria in Specific Environments.
CSC-STD-004-85, 25 June 1985.

299

The IT Security Evaluation Manual (ITSEM)

Y Klein l, E Roche 2, F Taal3, M Van Dulm 4

U Van Essen3, P Wolf«, J Yates 7

ABSTRACT

Three basic elements are required to carry out an IT Security Evaluation : Criteria for what has to be
assessed; a Methodology for how the assessment is to be carried out; and a scheme to provide a
framework in which such assessments may be conducted.

Four member states of the European Community (France, Germany, the Netherlands and the United
Kingdom) first developed the Information Technology Security Evaluation Criteria (ITSEC), which have
already had some success in attempting to meet the first requirement. This paper will review the recent
development of the Information Technology Security Evaluation Manual [ITSEM], which presents a
solution to the second requirement in the context of national schemes.

The paper will present an overview of the ITSEM and will then introduce and examine four fundamental
principles of evaluation: Repeatability, Reproducibility, Objectivity and Impartiality. Fulfilment of these
four principles is a technical prerequisite of international mutual recognition of the certificates which are
issued to summarise the outcome of evaluation, and to confirm that they have been properly conducted.

The paper will also reflect the fuller consideration given in ITSEM to the Strength of Mechanism and
Vulnerability Assessment concepts, previously introduced in the ITSEC, in order to illustrate how the
fundamental principles are applied in practice.

INTRODUCTION

Four member states of the European Community (France, Germany, the Netherlands and the United
Kingdom) developed the Information Technology Security Evaluation Criteria (ITSEC) to provide a basic
set of criteria as a foundation for security evaluation.

However, in order to perform evaluations, as well as having criteria, it is necessary to have a
methodology for evaluation, and an evaluation scheme to provide an organisational framework.

1 Service Central dc U Security des Systemes d'Infonmation, Paris. France

2 Department of Trade and Industry, London, United Kingdom

3 Netherlands National Communications Security Agency, The Hague, The Netherlands

4 Ministry of the Interior, The Hague, The Netherlands

5 German Information Security Agency, Bonn, Germany

* Centre d'Electronique de l'Armement, Bruz, France

7 Communications-Electronics Security Group, Cheltenham, United Kingdom

300

In order to establish an evaluation methodology, the four states have now produced the Information
Technology Security Evaluation Manual (TTSEM). The objective of the ITSEM is to define methods for
carrying out evaluations against the ITSEC in sufficient detail to ensure that an evaluation performed in
one country can also be recognised by another country.

This aim of mutual recognition of evaluation results, leading to mutual recognition of certificates, is
furthered in ITSEM through the definition of methods which promote the principles of repeatability,
reproducibility, impartiality and objectivity.

This paper will provide a guide to the ITSEM document, an introduction to the four principles of
repeatability, reproducibility, impartiality and objectivity, and then provide some illustrations of how the
ITSEM applies these principles.

GUIDE TO ITSEM

The ITSEM is divided into 10 Chapters and 4 Annexes, and follows a similar presentation style to that
of the ITSEC.

Chapter 0 presents an introduction to the ITSEM. Chapter 1 contains a short presentation of the scope
of the ITSEM. Chapter 2 describes the Evaluation Process, defining the roles of the Certification Body
(CB) and the Information Technology Security Evaluation Facilities (ITSEFs) and gives a framework for
the organisational and procedural aspects to be followed during the conduct of an evaluation.

Chapter 3 explains the Evaluation Philosophy which underlies the ITSEC. It contains the principles
which must be followed by the evaluators to achieve the aims of the ITSEC. It considers the principles
of Feasibility of evaluation, Understanding by evaluators, and Mutual Recognition of evaluation results.

Chapter 4 contains the Evaluation Methodology. It describes the method as a means of generating
evaluation work programmes, consistent with the evaluation philosophy and principles described in
Chapter 3. The Chapter examines the tasks in sufficient detail for mutual recognition arrangements and
provides objective instruction on how evaluators should identify vulnerabilities and undertake penetration
testing. It considers the raison d'etre of security measures through an examination of assets, threats,
risks and confidence. It explores the definitions of various ITSEC terms such as security objectives,
components, functions and mechanisms. It draws the distinction between errors and vulnerabilities and
presents a detailed account of vulnerability assessment.

Chapter S contains details on the contents and the scope of deliverables to be presented to an evaluation.
This is more than just a consolidation of the deliverable requirements defined in the ITSEC. There are
implicit as well as explicit requirements in the ITSEC. For example, the evaluators may need access to
the operational site (in the case of a system evaluation) and may require informal training from the
developers.

Chapter 6 contains details on the contents and the scope of the Evaluation Reports in order to be
acceptable for consideration by a CB. It also gives guidance for the production of Certificates.

Chapter 7 identifies the different categories of tools and techniques which enable the preparation, the
technical conduct and the administration of the set of tasks needed for the evaluation of the Target of
Evaluation (TOE). It defines the major classes of use and specifies the qualities and characteristics to

301

which the tools have to conform. It cross refers each such category of tools to the various ITSEC
criteria, level by level, and proposes the use of a 'Populated Integrated Project Support Environment'
(PIPSE) in which such tools may be beneficially organised.

Chapter 8 explains when re-evaluation becomes necessary. A set of rules is stated and the consequences
for a modified TOE are described. In particular the (basic) components of a TOE are categorised as
being one of four types during initial evaluation. Four types of change are identified of varying
substance and related to the four categories of component, level by level, in a set of tables indicating the
consequence of such a change in terms of the need for re-evaluation.

Chapter 9 deals with the evaluation of TOEs which already contain evaluated components. It describes
a model which enables the evaluator to identify those activities which have to be performed (or repeated)
when composing pre-evaluated components into a new product or system.

Chapter 10 contains definitions of technical terms used within the ITSEM and provides full details of
references made to external publications.

Annex A provides a definitive list of all forms of deliverable, level by level, as identified in Chapter 5.
Annex B gives a detailed tabulation of the Completeness Criteria introduced in Chapter 3.

Annex C deals with the application of the ITSEC. It provides examples of the interpretation of various
terms used in ITSEC, demonstrating how the ITSEC can be applied to the evaluation of systems and
products. Seven examples are given spanning all ITSEC criteria.

A full index is provided to the document as Annex D.

FOUR FUNDAMENTAL PRINCIPLES

Evaluation has developed over the last ten years from a basic need to establish the level of confidence
that can be placed in the security of a system or product. The enormous growth in the number of
systems which require a measure of assured security has meant that the techniques of evaluation have
spread worldwide. The danger inherent in this rapid growth is lack of standardisation in how evaluation
is performed. The ITSEC is an attempt to provide a common set of criteria against which evaluation
can be performed, and the ITSEM goes further, to develop a common framework for the evaluation
process itself.

As with any process of testing something against some defined criteria, there are certain essential
characteristics of the testing process itself which must be established. The most important of these are:

Repeatability

Reproducibility

Impartiality

Objectivity.

302

If evaluation adheres to these principles, then many advantages follow, both in the effectiveness of
evaluation, and in the scope for mutual recognition of evaluation results.

Repeatability

This is defined as:

repeatability: repeated evaluation of the same system or product (i.e. the same TOE in
ITSEC terminology) to the same security target by the same ITSEF yields the same
overall verdict (e.g. in ITSEC terms: EO or [F-B3, E5]).

In order to ensure that this principle is applied, evaluators must follow established procedures. ITSEFs
will therefore need to set up standard procedures for performing evaluations, and base them on well
understood underlying principles. The ITSEM provides a definition of the evaluation process and
describes its underlying philosophy, as well as providing guidance on generic evaluation work
programmes as a framework for performing repeatable evaluation.

There is also guidance in the ITSEM on how to assign verdicts against the individual ITSEC criteria,
which should assist in adhering to repeatability of the assignment of verdicts by different individuals
within an ITSEF.

Reproducibility

This is defined as:

reproducibility: evaluation of the same TOE to the same security target by a different
ITSEF yields the same overall result as the first ITSEF (e.g. EO or [F-B3, E5]).

This principle is similar to repeatability, but is more difficult to achieve, as it places extra constraints
on the commonality of approach between different ITSEFs. To apply this principle there has to be a
level of organisation for evaluations which ensures that all ITSEFs are operating in a common way,
which allows their evaluation verdicts to be comparable. The ITSEM lays down some basic rules for
CBs and national evaluation and certification schemes to provide a framework for reproducibility between
ITSEFs in one country. The aim of reproducibility of results from ITSEFs in different countries is
being pursued by groups discussing mutual recognition of evaluation results.

Impartiality

This is defined as:

impartiality: evaluation is free from unfair bias towards achieving any particular result.

This is primarily a concern of CBs, who must ensure that no commercial or personal bias is introduced,
through relationships between developers or sponsors of TOEs and the ITSEFs performing the
evaluation. The ITSEM provides a framework of rules for who may (and may not) perform evaluations,
which is aimed at ensuring that such conflicts of interest do not occur. It also establishes a need for
reviews of the conclusions reached by an evaluator, by others within the ITSEF, with the objective of
eliminating any individual bias in the results.

303

Objectivity

This is defined as:

objectivity: a property of a test whereby the result is obtained with the minimum of
subjective judgement or opinion.

In the past, the results of evaluation have depended to a large extent on the individual knowledge and
experience of evaluators. The technique of evaluation has to be based on individual evaluators
investigating a TOE until they have established a degree of confidence in its security. As well as being
very subjective, this approach has also worked against the principles of repeatability, reproducibility and
impartiality.

Obtaining completely objective results is an unattainable goal, however the ITSEM provides a number
of means by which objectivity can be improved.

The most significant of these is the framework of a set of detailed evaluator activities based on the
ITSEC, together with guidance on how these activities should be carried out. The ITSEM provides
guidance on how an evaluator should assign verdicts against the individual ITSEC criteria, based solely
on the evidence provided by the sponsor. In this way, opportunities for subjective judgements are
reduced.

Guidance is also provided on how far an evaluator should go in investigating the TOE through the
provision of Completeness Criteria; corresponding metrics are derived by the evaluator, to show that
he has performed all the evaluation checks that are required and no more. The principle of independence
of evaluators is introduced to ensure that the temptation simply to agree with the sponsor's evidence is
removed by the need to perform independent analysis.

All the above techniques are introduced, through the ITSEM, to try to increase the objectivity of
evaluation, to improve the process technically, but also to provide a foundation for mutual recognition
of evaluation results.

Mutual Recognition

Security evaluation is one of many activities for which international mutual recognition is sought. ISO
Guide 25 and EN45001 lay down guidelines for creating a framework for objective testing, regarding
all types of products whether IT related or not in order to ensure that international mutual recognition
of test results is possible. In the UK, the National Measurement Accreditation Service (NAMAS) has
produced NIS35 [NIS35], a specific interpretation of the general regulations for IT testing.

Mutual recognition has been achieved in other fields of testing by a process of accreditation, i.e. by
agreeing to recognise the technical competence and the impartiality of a test laboratory. International
and European Standards (ISO Guide 25 [GUI25] and EN45001 [EN45]) have been established to provide
guidance for this purpose, and the Western European Laboratory Accreditation Cooperation (WELAC)
had been set up to implement them. Clearly, it was sensible to utilise this approach in the achievement

304

of international mutual recognition of security evaluation and certification. Thus, the Four Nations
decided that evaluation laboratories should be accredited under a recognised Accreditation Scheme as a
condition of licence to perform evaluations against the ITSEC. In order to make this possible, it was
decided not only to harmonise existing evaluation methods but to ensure their compliance with ISO Guide
25 and EN45001. Such a strategy should form a sound technical basis from which international mutual
recognition agreements can emerge.

The principal aim of the ITSEM is therefore to present sufficient detail of evaluation methods and
procedures to ensure that technical equivalence of evaluations can be demonstrated. The intention,
however, is not to unduly constrain the implementation of National Schemes and thus the scope of the
ITSEM is limited to just that sufficient to allow demonstration of technical equivalence. However
substantial information is included to ensure that the principles of repeatability, reproducibility,
objectivity and impartiality can be fulfilled.

IMPLEMENTATION OF THE PRINCIPLES IN ITSEM

The above section introduced a number of areas in which the ITSEM has extended the basic concepts
in the ITSEC to embrace the principles of repeatability, reproducibility, impartiality and objectivity, with
the objective of improving the evaluation process, and obtaining mutual recognition.

The ITSEM does this by:

providing a definition of the evaluation process and the roles of the participants

describing a technique and procedural framework for reviewing evaluation results

defining a common philosophy of evaluation to be applied by all participants

providing a framework for evaluation methods and evaluation work programmes

defining a consistent and objective technique for assigning verdicts

describing a technique by which completeness of the evaluation requirements can be
demonstrated

providing procedures for performing vulnerability assessment

defining a way in which security mechanisms can be assessed for strength

providing outline standards for the form of documents recording the results of evaluation

establishing a framework for decisions on the Re-evaluation of TOEs and the Re-use of
evaluation results.

The two areas of Strength of Mechanisms and Construction Vulnerability Assessment will be considered
further below, to provide some examples of how the ITSEM promotes adherence to the four principles
identified earlier.

305

Strength of Mechanisms

A number of correspondents in commenting on the ITSEC pointed out that the measurement of strength
(resistance to direct attack) as given in the ITSEC is subjective. For this reason the ITSEM elaborates
on the ITSEC to give a more objective account of such measurement.

In simple terms, the ITSEM introduces four factors, each with just three values (or value ranges) which
could be determined experimentally, at least in principle. They are:

TIME: the time taken to make a successful attack (including all failed attempts)

COLLUSION: the necessary 'inside' assistance required to prepare or actually make the
attack

EXPERTISE: the minimum expertise required to carry out the attack

EQUIPMENT: the equipment required to make the attack.

Two heuristic tables are provided, one relating TIME and COLLUSION and the other EXPERTISE and
EQUIPMENT. The evaluator determines the values of each of these four factors and simply adds
together the two numbers found by looking up TIME and COLLUSION in the first table and
EXPERTISE and EQUIPMENT in the other. The ITSEM then relates the results of this addition to the
scale basic, medium and high.

Strength of Mechanism scores

Score Strength

1 not even basic

2- 12 basic

13-24 medium

>24 high

For example, if a countermeasure can be defeated 'within minutes' 'alone' (TIME*COLLUSION = 0)
by a 'layman' 'unaided' (EXPERTISE*EQUIPMENT = 1), then the overall score is 1, which the
ITSEM tells us is not even basic. If the countermeasure can be defeated 'within days' with the necessary
assistance of (another) authorised 'user' (TIME*COLLUSlON = 12) by a 'proficient' attacker 'using
domestic equipment* (EXPERTISE*EQUIPMENT = 4) then the overall score is 16, which is medium.
The ITSEM defines the permitted values of the four factors, for example 'proficient' means "a person
thoroughly familiar with the internal workings of the TOE but inexperienced with the workings of the
underlying principles and algorithms of the type or actual security mechanisms involved".

It can be seen that while this does not provide a completely objective measure of strength, it provides
a result which depends on a number of easily defined factors. The resultant rating of strength will
consequently be based on a more objective assessment than one which consisted of a single subjective
judgement.

306

Construction Vulnerability Assessment

The ITSEC identifies this effectiveness criterion, and gives a brief description of the evaluator actions
that should be performed. Two of the areas it identifies where the evaluator should perform analysis are:

perform independent vulnerability analysis

perform penetration testing.

These two areas are expanded in the ITSEM, to provide clarification of the meaning of the terms, and
to provide guidance on how these actions should be performed.

In order to perform an independent vulnerability assessment the evaluator must:

take each representation in turn (starting with the architectural design and proceeding
with the detailed design and implementation as determined by the evaluation level in
question) and, following the determination that each representation is a correct
refinement of its corresponding higher level representation

determine whether or not an attacker could use the information present in each
representation to defeat the objective of a countermeasure. (The countermeasures and
their objectives are identified in the security target.)

An empirical procedure for identifying construction vulnerabilities, in the form of a (non-exhaustive)
checklist, is to determine whether any of the following can be used to defeat the objective of a
countermeasure:

change the predefined sequence of invocations of components (as defined at this level)

inject the execution of a component into the predefined sequence (also execution of data
can be injected)

use interrupts or scheduling functions to disrupt timing

directly access (read, modify) internal data (secrets, local variables)

indirectly access internal data (secrets, local variable)

execute data not intended to be executed or make them executable

use a component in a different context or give it a different semantics

make use of new data objects introduced at this level

disrupt concurrency

use interference between components which is not visible at a higher level of abstraction

307

invalidate assumptions and properties which are to remain valid at lower levels of
abstraction.

If this checklist is consistently applied by all evaluators it should provide an improvement in objectivity
of assessment, as well as gains in repeatability and reproducibility.

The ITSEM's guidance on the evaluator activity Perform Penetration Tests is given in the form of a set
of procedures on how the work should be organised.

Penetration testing is defined in the ITSEM as the activity of:

understanding the structure of the TOE and the security target

generating hypotheses about flaws, i.e. finding potential vulnerabilities

confirming the presence of those flaws, i.e. demonstrating, using penetration tests, that
the potential vulnerabilities are, or are not, exploitable is practice

generalising the flaws, i.e. considering whether the exploitable vulnerabilities are
symptomatic of deeper vulnerabilities in the system.

In order to perform penetration testing the evaluator should therefore carry out the five sub-activities of:

Prepare For Penetration Tests

Identify Penetration Tests

Specify Penetration Tests

Execute Penetration Tests

Follow-up Penetration Tests.

Prepare For Penetration Tests consists of ensuring that all parties concerned (developer, sponsor, user
etc) prepare well in advance for provision of access to the TOE and other facilities needed to perform
tests.

Identify Penetration Tests is gathering together all the information on potential vulnerabilities that has
been collected in other evaluator actions, particularly other actions under Construction Vulnerability
Assessment. The techniques of Completeness Criteria are used to ensure that all vulnerabilities, and their
modes of exploitation, have been considered.

Specify Penetration Tests is the production of a complete specification of all the penetration tests that
are to be performed, and a test plan for their execution.

Execute Penetration Tests is the performance of the defined tests, as determined in the test plan.

Follow-up Penetration Tests involves the activities associated with recording the results of tests,
informing appropriate parties of any findings, and dealing with any consequences of the results.

308

Ensuring that penetration testing is always carried out in a similar way in all evaluations will help to
ensure repeatability and reproducibility, and through the use of consistent techniques, the aims of
objectivity and impartiality will be supported.

These examples show how the ITSEM promotes these four principles through the use of evaluation
techniques, in the areas of technical analysis methods, the use of checklists and the following of defined
procedures.

THE WAY AHEAD

There are a number of areas in which the ITSEM, at Version 0.2, is known to fall short of providing
all that is needed in guidance for objective evaluations. A workshop is planned for September 1992,
at which experts in the field will be invited to make contributions to the development of objective
techniques and to the next issue of the ITSEM.

It is expected that this input will result in production of a further version of the ITSEM early in 1993,
which should be usable for a trial period, in the same way as the ITSEC Version 1.2 has been on trial.

At the end of the ITSEC's trial period a new version will be published, to take account of the ITSEM
and the practical experience that has been gained through the use of the ITSEC in evaluation.

The main outcome from the establishment of the ITSEM as an international standard will be the
framework it provides for mutual recognition of evaluation results, based on the principles of
repeatability, reproducibility, impartiality and objectivity. There is much work to do in establishing
mutual recognition agreements based on the ITSEM, and in setting up national schemes which conform
to its requirements.

REFERENCES

EN45 General Criteria For The Operating Of Testing Laboratories, CEN/CENELEC, June
1989

GUI25 ISO Guide 25, General Requirements For The Technical Competence Of Testing
Laboratories, International Standards Organisation, 1982

NIS35 Interpretation Of Accreditation Requirements For IT Test Laboratories For Software And
Communications Testing Services, NAMAS Information Sheet NIS 35, NAMAS
Executive, National Physical Laboratory, United Kingdom, November 1990

ITSEC Information Technology Security Evaluation Criteria (ITSEC), Harmonised Criteria Of
France, Germany, the Netherlands, United Kingdom, Version 1.2, June 1991, published
by the Commission of the European Communities, ISBN 92-826-3004-8

ITSEM Information Technology Security Evaluation Manual (ITSEM), Version 0.2, April 1992,
published by the Commision of the European Communities.

309

THE KINETIC PROTECTION DEVICE

Gregory Mayhew, Richard Frazee and Mark Bianco

Hughes Aircraft Company Ground Systems Group
P.O. Box 3310, Building 600 Station F241

Fullerton, California 92634

Abstract

The two general categories of symmetric key cryptographic algorithms
are block ciphers and stream ciphers. Stream ciphers have inherently less
encryption and decryption latency than block ciphers. However, stream ciphers
are more difficult to design than block ciphers because the properties of the
keystream must be carefully controlled. Hence in the public domain, the
available devices are predominantly based on block cipher algorithms. Hughes
Aircraft Company Ground Systems Group has developed a digital stream cipher
for which the algorithm produces keystream satisfying all appropriate measures
of randomness. The implementation is capable of megabits per second oper-
ation. The breadboard design is being transferred into an application specific
integrated circuit by Hughes Aircraft Research Laboratory as a demonstration
vehicle for reverse engineering protection of integrated circuits.

Keywords: stream cipher, binary sequences

Problem Statement

In a "classical" or symmetrical key system, cryptographic security can be maintained
only if the key is held in private. Because only authorized users have access to the key,
secrecy and authentication are provided at the same time. Assuming the secrecy of the key is
maintained, then the security depends on the strength of the cryptographic algorithm. The two
general categories of symmetric key cryptographic algorithms are block ciphers and stream
ciphers. In block ciphers, the information stream is first segmented and then each segment is
put through a series of invertible permutations and substitutions. In stream ciphers, a pseudo
random bit stream is added bit by bit (Exclusive ORed) to the data stream. Stream ciphers have
inherently less encryption and decryption latency than block ciphers. However, stream ciphers
are more difficult to design than block ciphers because the properties of the keystream must be
carefully controlled [1]. Hence in the public domain, the available digital devices for
"classical" systems are predominantly based on block cipher algorithms. Examples of digital
block ciphers are the Data Encryption Standard, the FEAL-N, and Teledyne Electronics
Dynamic Substitution Device [2, 3].

310

Hughes Aircraft Company Ground Systems Group has developed a digital stream
cipher for which the algorithm produces keystream satisfying all appropriate measures of
randomness and for which the implementation is capable of mega bits per second operation.
The Kinetic Protection Device (KPD) was originally conceived as a replacement module for the
Department of Defense (DoD) cryptographic device embedded in the Position Location and
Reporting System (PLRS) units and Automatic Location and Data Networking System
(ALADNS) units. The KPD has been subjected to extensive standard statistical tests for
pseudo randomness and the results are presented. The KPD breadboard design is in the
process of being transferred into an Application Specific Integrated Circuit (ASIC) by Hughes
Aircraft Company Research Laboratory as a demonstration vehicle for reverse engineering
protection of integrated circuits.

PLRS and ALADNS

PLRS provides the basic tactical functions of position location, navigation,
identification, and digital data communication in a hostile ground environment [4]. A PLRS
community consists of one Master Station (MS) and about 400 User Units (UU). The master
station and the user units are modems participating in a time division multiple access network.
Each user transmits in its assigned time slots. The transmissions are in the 420 to 450 MHz
UHF band. The anti-jam features are short burst transmissions, about 5 MHz of direct
sequence spreading on each transmission, adjustable transmission power up to about 100
Watts, and forward error correction on all transmissions. All units perform time of arrival
measurements on any transmission that they are able to receive. The time of arrival
measurements are then reported to the MS through a hierarchy of relays. The master station
performs multi-lateration on all the ranging measurements to obtain everyone's relative
position. This position information is then used to provide navigation information to all users
and to provide a location display in real time of all users within the system's operational area to
the master station personnel.

A user unit can be configured as a manpack, vehicular, or rotary wing airborne unit.
The militarized unit weights 13 pounds. The manpack requires one lithium battery which
weighs 3 pounds. The user unit consists of an RF section, a signal processor, a secure data
unit, a message processor, a barometric section, and an operator interface. The message
processor converts operator requests to system messages or composes routine system
messages. One such system message is the barometer reading so that unit height above sea
level can be factored into the multilateration equations. Every message is encrypted by the
digital secure data unit and forward error correction encoded by the signal processor. The
secure data unit prevents unauthorized users from gaining access to the network and prevents
repeat jammers from spoofing the network.

The master station has all the modem components of the user unit contained in a
command response unit as well as a suite of 3 militarized computers and a 19 inch circular
graphics display station. The computers perform all the network management, message traffic
control, position location, unit tracking, and generation of operator displays. The MS is inside
a shelter which is transportable by a 5 ton truck.

ALADNS is essentially small community PLRS. By reducing the maximum number of
units to 64, the individual users data rate can be increased correspondingly. A more powerful
microprocessor was also incorporated into each user unit so that the network management and
position location computations are now distributed uniformly amongst all users in the network.

311

AUXILIARY
GROUND UNIT
IMANPACK UNIT
PLUS ANTENNA
TOWER]

PILOT CONTROL/
DISPLAY PANEL

fAIRCRAFfl
LuNtT J

USE
READOUT
MODULE

Figure 1. PLRS Network Components

KPD Architecture

The digital secure unit is inherent to the operation of PLRS and ALADNS. However,
in general DoD cryptographic devices cannot be exported. For foreign sales of PLRS or
ALADNS, an alternative, exportable cryptographic device was required. The device must
duplicate the system interfaces exactly and must provide sufficient cryptographic strength.
Figure 2 illustrates the functional areas of the KPD.

The master controller interprets the basic commands from the host unit. With the
proper signalling, the control function will interpret the information on the data lines as
plaintext or ciphertext. The control function then interacts with the keystream generator and the
message validation functions to orchestrate the digital data through all the proper steps.

The crypto function includes message ciphering and message validation. Prior to
message encryption, 10 bits of message validation are computed for each message. The
message validation bits are protected by the encryption so that false messages cannot be
inserted into the system. After message reception and decryption, message validation bits are
computed on the received data bits. The computed validation bits are compared with the
received validation bits and the result is reported.

The message validation algorithm is a cyclic redundancy check [5]. The CRC for the
KPD uses the polynomial X10 0 X3 © X2 0 X1. With this polynomial, the message
validation detects all odd number of errors, detects all double errors, detects all burst errors of
length < 10, and detects 99.8 % of all longer burst errors.

312

MASTER
CONTROLLER

CRYPTO FUNCTIONS

FROM
HOST

INPUT
BUFFER

KEY MANAGER

RS232-C
INPUT

Key Storage
Key Validation
Key Loading
Key Transfer

• Message Ciphering
• CRC Encode/Decode
• Keystream Generation
• CDMA Code Generation
• IV Maintenance
• Test Signature Generation

STATUS MONITOR

- Status Maintenance
- Status Word transfer

ALARM SYSTEM

- Signature Test Circuitry
• Alarm Monitoring

I
TO

HOST

OUTPUT
BUFFER

Figure 2. Kinetic Protection Device Functional Diagram

The keystream generator is a Key Auto Key stream cipher [6]. An initializing vector
(IV) is used to produce the initial bit of the cryptographic keystream. At all subsequent time in
the enciphering or deciphering operations, the IV is modified using keystream rather than
plaintext or ciphertext. The advantage of this approach is that each bit error in the ciphertext
induced by channel noise affects only that corresponding plaintext. Hence the ciphering
process does not create error extension. A cryptographically strong stream cipher must not
reoriginate, so the IV is modified prior to the encryption of any message. Each participant in
the network must update their IV at any network transmission opportunity even if that
participant does not have a message to transmit in any given network transmission opportunity.

The KPD includes cryptovariable key storage for the current data protection key, the
next data protection key, and a special key protection key. Thus with one active data protection
key the KPD support one level of data security. With the key protection key the KPD provides
over the air rekeying (OTAR). The KPD also performs status monitoring and fault checking.

KPD Kevstream Generator Design

The only unbreakable cipher is one with a keystream that never repeats and contains
neither meaning nor pattern. Such a system is the one time pad. In a one time pad, random
numbers from a printed sheet are added to the number value of each letter of a message. With
high rate communications it is impossible in a practical sense to store a sufficiently large "pad"
at the participants. Rather, a one time pad is emulated by algebraically generating sequences
with various randomness properties. Any sequence generated algebraically will eventually
repeat so the sequences are pseudo-random or pseudo-noise (PN) instead of truly random.
Stream ciphers are an attempt to digitally duplicate the properties of the one time pad.

313

Stream ciphers can be categorized according to the mechanics of generating the
keystream. Typical methods involve lookup tables, noise generating devices (diodes), or shift
registers. Methods which result from lookup tables and noise generating devices are quite
cumbersome. On the other hand, shift registers generate sequences which look random in
every sense yet are easy to construct algebraically. This shift register property enables a
cooperative transmitter and receiver to easily comprehend messages which appear only as noise
to an interceptor. The KPD is a stream cipher which has a shift register as its foundation. The
mathematical properties of shift registers were considered to find a cryptographically acceptable
design and the hardware issues of shift register implementation were considered to select a
realizable design.

As shown in Figure 3, a shift register consists of the memory assembly which acts as a
state machine, a feedback function which determines the basic operation, and an output
function which interfaces to the external world.

—c: Output Function
)

I

1
111

— X
n-1 • • • X3 "*— X2 **•

T T T
t

- *1 - 1

(_
Feedback Function

)—'

Figure 3. Generic Shift Register Structure

The goal of the feedback function is to put the n stage shift register through all 2n-1
non-zero states before the states repeat. The feedback function can be linear or nonlinear. The
full period linear functions produce M sequences and the full period nonlinear functions
produce de Bruijn sequences [7]. The process of selecting full period feedback functions is
well understood for linear feedback but not for nonlinear feedback. Similarly, the output
function can be linear or nonlinear. Linear output functions do not inject any randomness
properties into the keystream whereas nonlinear output functions do inject randomness
properties into the keystream.

One method to upper bound the cryptographic strength of a stream cipher is to
determine the linear span of the keystream [8]. The linear span of a sequence is the least order
recursion relationship with binary coefficients that can duplicate the given sequence. This
corresponds to a shift register with a linear feedback function and a single tap linear output
function. If a sequence has linear span L, then after 2L successive elements of the sequence
are known, the remainder of the sequence can be exactly predicted. As n grows large, 2n is an
extremely small portion of the 2n-l period of a linear feedback function. To get acceptable
performance, a linear feedback function can be combined with a nonlinear output function.
The linear span L of the resulting sequence is then a function of the shift register length n and
the degree of the nonlinear output r [9].

314

= y I i I where I j I is given by
i! (n-i)!

As shown in Table 1 for a 13 stage shift register, the combination of linear feedback and
nonlinear output rapidly approaches the cryptographic strength of nonlinear feedback alone.
The difference is that, even for modest shift register sizes (20 stages), nonlinear feedback
cannot be accomplished whereas linear feedback and nonlinear output can easily accomplished.

Table 1. Effect of Nonlinear Output on Linear Span

Feedback
Function

Degree Output
Function

Predictable
after* bits*

% of period
needed *

Linear 1 26 0.3
ii 2 182 2.2
it 3 754 9.2
II 4 2184 26.7
II 5 4758 58.1

Nonlinear 1 >4096 >50

The combination of linear feedback and nonlinear output is the basis of the KPD
design. The KPD block diagram is shown in Figure 4. The KPD is a digital stream cipher
which produces 1 bit of output keystream for every clock pulse. The shift register size is 61
stages, the feedback is any valid linear feedback function, and the nonlinear output function is
variably selected from a set of degree 4 functions. The shift register size was chosen for two
reasons. First, the full period cycle should be significantly longer than any portion of the cycle
that will be used. Assuming continuous operation at 1 GHz, a 61 stage shift register has a
period length of 1 century. Second, the linear feedback functions for a 61 stage shift register
are easier to select. When the number of stages corresponds to a Mersenne exponent — 2, 3,
5, 7, 13, 17, 19, 31, 61, 89, 107, and 127 — the irreducible polynomials are also primitive
polynomials so less testing is required by the designer but not by the interceptor to select valid
feedback functions [10].

The key for the KPD is 64 bits. Of these 64 key bits, 60 bits perform the selection of
the feedback taps. For the feedback portion of the key, the size of the key space is 260 or
1,152,921,504,606,846,976. The number of valid keys is 37,800,705,069,372,032 or
(261-2)/61 . A dedicated high end personal computer or minicomputer is required to perform
the necessary key generation function. The remaining 4 key bits are to select 1 of 16 nonlinear
output functions. These nonlinear functions are stored in ROM. The implementation of the
nonlinear output functions in ROM enables the system to be changed in the event of
compromise without scrapping the entire security system.

At present, the nonlinear output functions in the KPD have degree 4. This corresponds
to a theoretically estimated linear span of 559,736. Therefore, a minimal sample of 1,119,472
consecutive bits should be necessary in order to possibly compromise the KPD design. The

315

KPD was designed for an environment in which at most 200 consecutive bits would potentially
be available for compromise. Obviously, a linear span of 559,736 enables the KPD to cipher
considerably longer messages than 200 bits.

16 Nonlinear
Functions

MUM
tap contents of 6 cells

r "N

|—*" 61 stage MLFSR —•,

4 4 ... • 4 ... 44
Feedback Control Register ^4—'

^— Initial Fill Storage Register

Figure 4. KPD Keystream Generator Block Diagram

KPD Kevstream Statistical Analysis

The randomness characteristics of the KPD keystream will depend critically on the
functions used in the ROM. Furthermore, the majority of these properties must be determined
by testing rather than by analysis. The randomness properties to be tested are the balance
property, the first delta property, the second delta property, the third delta property, and the
polybit property [11, 12]. The remaining randomness property, the linear span of the
keystream, can be estimated by analysis and then verified by testing.

The keystream produced by the KPD has been evaluated using extensive standard
measures of statistical randomness. Values quoted for each of the randomness properties
correspond to a perfectly random stream. A design is evaluated by how close the pseudo-
random keystream approaches the perfectly random keystream. Minimum sample size to
evaluate a design is 1 million bits.

The balance property is satisfied if the total number of ones in the sample divided by the
sample length is 0.5. The KPD balance value is 0.5001. The first delta property is satisfied if
the total number of overlapping 00 and 11 patterns divided by the sample length is 0.5. The
KPD first delta value is 0.4993. The second delta property is satisfied if the total number of
overlapping 000 and l0l patterns divided by the sample length is 0.5 (0 is don't care.) The
KPD second delta value is 0.5004. The third delta property is satisfied if the total number of
overlapping O00O and 1001 patterns divided by the sample length is 0.5 (0 is don't care.) The

316

KPD third delta value is 0.4993. The poly bit property is satisfied if there is a uniform
distribution of the 2m possibilities on length m non-overlapping segments of the keystream.
For the sample size of the KPD evaluation, the expected polybit value is 488 and the KPD Chi
square value was 615. Therefore, according to all the statistical tests performed, the KPD is
producing high quality pseudo-random keystream.

With a shift register length of 61 and nonlinear output functions of degree 4, the
theoretical estimate of the linear span for the KPD keystream is 559,736. Random samples of
the keystream have had verified linears spans in excess of 100,000 bits.

For applications requiring larger linear spans, the KPD architecture provides a simple
mechanism for increasing the cryptographic strength of the keystream. For example, a degree
6 output function will result in a keystream with a linear span of 62,034,255 and will require a
minimum sample of 124,068,510 consecutive bits to compromise. Similarly, degree 7 and
degree 8 output functions will result in a keystream with linear spans of 442,779,663 and
3,387,607,428, respectively. So degree 7 and degree 8 output functions will require a
minimum sample of 885,559,326 and 6,775,214,856 consecutive bits, respectively, to
compromise. Computing linear spans on 30,000 bits of keystream typically takes 6 hours of
CPU time on a 1 MIP machine. Thus, any enhanced KPD design is reasonably beyond the
capabilities of the majority of potential interceptors.

KPD Breadboard and ASIC

The KPD unit consists of a master controller, a key manager, a cryptographic functions
section, a status monitoring section, an alarm system, and input/output buffers. The KPD
breadboard is a 9 inch by 9 inch wire-wrap board. The KPD breadboard design uses 72
integrated circuits. The master controller and key manager utilize the Altera erasable
programmable stand alone microsequencers (EP-SAMs). The EP-SAM is a highly versatile
microsequencer which has re-programmable microcode. The microsequencers are easily re-
programmable to add functionality or to change interface timing. Another 39 integrated circuits
are low density Altera erasable programmable logic devices (EPLDs). The EPLDs provided a
high degree of flexibility during design, test, and debug. Much higher density EPLDs (- 5:1)
and programmable gate arrays (Xilinx) are now available. The remaining 31 integrated circuits
are all high speed complementary metal oxide semiconductors (HCMOS). The core keystream
algorithm requires only 12 integrated circuits. The majority of the integrated circuits are for
key management, fault testing, and interface timing.

The KPD is a digital, stream cipher which produces 1 bit of output keystream for every
clock pulse. The operating speed of the KPD is determined by the implementation technology
rather than the algorithm. The KPD is presently designed to operate at up to 16 MHz clock
rate. The operating speed of the present KPD breadboard is currently limited by the operating
speeds of the older Altera EPLDs. Replacing the older EPLDs with newer EPLDs will increase
the breadboard operating speed. HCMOS circuitry on the KPD breadboard will accommodate
up to a 25 MHz clock. Because the KPD design is all digital, faster operating speeds are
obviously possible with the appropriate technology, such as ACMOS or gallium arsenide.

Hughes Research Laboratory in Malibu, California is currently transferring the KPD
breadboard design into a custom Application Specific Integrated Circuit. Hughes Research
Laboratory is using the KPD ASIC as a means to demonstrate its patented Design Protection
and Usage Control (DP&UC) process for integrated circuits [13].

317

The first portion of the DP&UC, design protection, is a collection of active and passive
techniques to prevent reverse engineering of integrated circuits. A integrated circuit with these
design protection techniques looks topologically different than it operates, even when focused
ion beam, infrared inspection, and planer slicing reverse engineering processes are applied.
The design protection also includes circuit mask protection. Thus someone using an
unauthorized copy of the mask will produce a malfunctioning integrated circuit.

The second portion of the DP&UC, usage control, is the incorporation of authorization
keys into the integrated circuit design. Thus, either an authorized copy without a proper key or
an unauthorized copy of the integrated circuit will function differently than an authorized copy
of the integrated circuit with a proper key. The key storage portion of the integrated circuit is
also protected against reverse engineering.

References

1. Rueppel, Analysis and design of stream ciphers, Springer Verlag, Berlin, 1986.

2. Data Encryption Standard, Federal Information Processing Standard (FIPS)
Publication 46, National Bureau of Standards, Washington, D.C., January 1977.

3. Murphy, "The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts", Journal of
Cryptology, Volume 2, Number 3, 1990.

4. Position Location and Reporting System - System Technical Description, U.S Army
Communications Research and Development Command, Fort Monmouth, New Jersey,
Document FR 81-14-251, March 1981.

5. Peterson and Brown, "Cyclic Codes for Error Detection", Proceeding of the IRE,
January 1961, pp. 228-235.

6. Meyer and Matyas, Cryptography: A New Dimension in Computer Security,
Wiley Interscience, New York, 1982, p. 61.

7. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, 1982.

8. Scholtz and Welch, "Continued Fractions and Berlekamp's Algorithm", IEEE Trans.
Inform. Theory, IT-15, pp. 90-94, January 1974.

9. Key, "An Analysis of the structure and complexity of nonlinear binary sequence
generators", IEEE Trans. Inform. Theory, IT-22, pp. 732-736, November 1976.

10. Peterson and Weldon, Error Correcting Codes, MIT Press, Cambridge, MA, 1972.

11. Fredricksen, "Pseudo randomness properties of binary shift register sequences",
IEEE Trans. Inform. Theory, pp. 115-120, January 1975.

12. Beker and Piper, Cipher Systems, Wiley Interscience, New York, 1982, Chapter 4.

13. Method and Apparatus for Securing Integrated Circuits from Unauthorized Copying
and Use, Hughes Aircraft Company, 23 August 1988, Patent Number 4,766,516.

318

KNOWLEDGE-BASED INFERENCE CONTROL IN A MULTILEVEL SECURE
DATABASE MANAGEMENT SYSTEM

Bhavani Thuraisingham

The MITRE Corporation, Burlington Road, Bedford, MA

I. INTRODUCTION

Inference problem is ihc problem of users deducing unauthorized information from the legitimate information
that they acquire. Wc arc particularly interested in the inference problem which occurs In a multilevel operating
environment. In such an environment, users arc cleared at different security levels and they access a multilevel
database where Ihc data is classified at different sensitivity levels. A multilevel secure database management system
(MLS/DBMS) manages a multilevel database where its users cannot access data to which they arc not authorized.
However, providing a solution to the inference problem, where users issue multiple requests and consequently infer
unauthorized knowledge, is beyond the capability of currently available MLS/DBMSs.

Due to the complexity of the inference problem (sec for example (THUR90a|). wc believe that a triple
approach to research is needed to combat it; one is to build inference controllers which act during transaction
processing, the other is to build inference controllers for database design, and the third is to build inference controllers
to act as advisors to the System Security Officer (SSO). In our recent papers, wc have described prototypes for
handling the inference problem during query and update processing |FORD90, COLL90|. In addition, techniques for
handling this problem during database design have also been proposed |THUR91a|. While the previous approaches
enable the detection and/or prevention of simple inference strategics that users could utilize to draw inferences, wc
believe that for an inference controller to be effective, it should be able to capture the complex reasoning strategics of
humans. In other words, what is needed is a knowlcdgc-bascd inference controller.

Knowledge-based inference control is a two-step process. The first step is to represent the multilevel
application as completely and accurately as possible. The second step is to reason about the application so that
security violations via inference could be prevented and/or detected. In section 2 of this paper wc discuss the use of
conceptual graphs for representing the multilevel application. A tool based on conceptual graphs could be utilized by
the SSO to design the multilevel database application. While the compulation techniques developed for conceptual
graphs could be utilized for reasoning about the multilevel database application, the output from the MLS/DBMS
also plays a significant role in users making unauthorized deductions. This means that any reasoning tool must also
take into consideration the responses released by the MLS/DBMS and audit data in order to effectively prevent/detect
security violations via inference. In section 3 of this paper wc discuss the essential points towards designing such a
tool. Figure 1 illustrates the two step process involved in knowlcdgc-bascd inference control. Wc envisage that a
tool based on the approach described here could be utilized by the SSO to detect/prevent security violations via
inference. The front-end of the tool represents the multilevel database application, responses released by the
MLS/DBMS, and the audit data in a formal that can be understood by the SSO. The back-end of the tool reasons
with the knowledge and detects/prevents certain security violations via inference.

Input from
SSO

Slept

Representation of
• Multilevel
Database

Application,
• Responses
released by the
MI-S/DBMS,
• Audit Data

Knowledge
Transformation

Step 2

Reasoning about
the Application
and linvironmenl
to Dclccl/I'rcvent
Security Violations
via Inference

Advice to SSO

Figure 1. Knowlcdgc-bascd Inference Control

319

2. REPRESENTING AND REASONING ABOUT MULTILEVEL DATABASE APPLICATIONS

2.1 BACKGROUND

Wc have utilized conceptual structures for representing and reasoning about multilevel database applications.
In particular, wc have examined the use of semantic nets as well as conceptual graphs for this purpose. The use of
conceptual structures for inference control was first proposed by Hinkc [HINK88] where the use of graph theoretic
techniques was described. Later Smith [SMIT90| investigated the use of semantic data models for representing
multilevel applications. The work reported in [BUCZ89I also investigated the use of semantic data modeling
techniques for controlling inferences in a multilevel environment. The use of conceptual graphs to handle the
inference problem was first introduced in |THUR90b| and later in [HINK92|. Other work on the use of conceptual
structures for representing and/or reasoning about multilevel database applications is reported in IBINN92, GARV92,
SELL92].

Among the various conceptual structures such as semantic nets, semantic data models, and conceptual graphs,
conceptual graphs seem to be the most appropriate scheme for representing complex applications. This is because
conceptual graphs subsume other structures such as semantic nets and they have the full power of first order logic.
Unlike logic-based systems, conceptual graphs represent knowledge in a manner similar to the way humans view the
world. Furthermore, they can also be extended to include modality and time without much difficulty. Another
advantage of using such a scheme is that the techniques developed for reasoning with conceptual graphs could be
utilized for detecting security violations via inference (sec for example the discussion in [SOWA84)).

Wc have chosen conceptual graphs for representing multilevel database applications. Although reasoning with
conceptual graphs is as powerful as reasoning with a logic programming system, most of the current knowledge-based
systems arc not based on conceptual graphs. Therefore, in our approach, the back-end of the inference controller,
shown in figure 1, reasons with knowledge represented in the form of rules and frames. In other words, the
conceptual graph representation utilized by the front-end of the inference controller must be transformed into frames
and rules in order to be processed by the back-end. The use of conceptual graphs is described in section 2.2. The
back-end of the inference controller is described in section 3.

2.2 THE USE OF CONCEPTUAL GRAPHS

The use of conceptual graphs for handling the inference problem was first proposed in fTHUR90b]. However,
in fTHUR90b], the use of inference rules for conceptual graphs to detect security violations via inference was not
addressed. In this section, wc review some of the essential points in conceptual graphs for representing multilevel
database applications, and discuss with an example how security violations may be delected.

As staled in [SOWA841, a conceptual graph is a finite connected bipartite graph which consists of concepts and
conceptual relations. Every conceptual relation has one or more arcs, each of which is linked to a concept. Wc define
a multilevel conceptual graph to be a conceptual graph in which some of the concepts and conceptual relations arc
sensitive. Figure 2 shows a multilevel conceptual graph (which was represented using a semantic net in
[THUR90b]). The Unclassified interpretation of this graph is as follows: CHAMPION carries passengers. Its
captain is Smilh who has 20 years' experience. The ship is located in the Mediterranean Sea on 16 June 1990. It's
destination is Greece. The Secret interpretation is as follows: CHAMPION carries SPARK which is an explosive.
Its captain is Smilh who has battle management experience. The ship is located in the Mediterranean Sea on 16 June
1990. Its destination is Libya. (Note that the Secret concepts and relations arc illustrated by darkened structures and
lines.)

In ITHUR90bl, some formation rules (for example, the join of two conceptual graphs, adding connectives such
as negation to a conceptual graph) were discussed. These formation rules produce new conceptual graphs. However,
these formation rules do not enable any computation. In order to delect security violation via inference, some form of
computation with conceptual graphs needs to be performed. In (SOWA84], several types of rules of inference have
been proposed for conceptual graphs. These rules enable compulation with conceptual graphs. Figure 3 illustrates a
deduction rule similar to Modus Poncns in logic. Figure 3(a) illustrates at the Unclassified level the fact that if
CHAMPION is sailing to Libya, then it must be a warship. Figure 3(b) illustrates at the Secret level the fact
CHAMPION is a warship and at the Unclassified level the fact that it is a passenger ship. Figure 3c illustrates at the
Unclassified level the fact that Champion is sailing to Libya. The set of graphs shown in figure 3 is inconsistent as

320

ihcrc is contradictory information at the Unclassified level. If a scl of graphs is inconsistent, then there is a potential
for a security violation via inference.

CHAMPION

SPARK

Mediterranean Sea
16 June 1990

Passengers

Baltic
Manage-
ment

Greece

Figure 2. Multilevel Conceptual Graph

CHAMP-
ION * I agent) * SAILS Y-+- (desl. J *• LIBYA

CHAMP-
ION

type Warship

(a)

CHAMP-
ION

m /typeA ^ Passcnger-

v^y^n ship
Warship

<b)

CHAMP-
ION "^ (agent f^ ?AILS -»-(dest. J **

LIBYA

(c)

Figure 3. Inconsistent Set of Conceptual Graphs

3. KNOWLKDGE-BASED INFERENCE CONTROL

In this section, we discuss the issues involved in designing the back-end of the inference controller illustrated
in figure 1. We will call this module the knowledge-based inference controller (KBIC). In section 3.1, we describe
the modules of the system. Knowledge representation issues are discussed in section 3.2. Reasoning techniques are
described in section 3.3. Issues on truth maintenance arc addressed in section 3.4. Implementation issues are
discussed in section 3.5. Much of our work has been influenced by the Cyc project carried out at MCC [LENA89].
A discussion on knowledge-based inference control is also given in (THUR91b].

321

3.1 MODULES

The major modules of the KBIC arc shown in figure 4. They are: the User Interface (UI), the Knowledge
Manager (KM), the Inference Engine (IE), the Conflict/Contention Resolution System (CCRS), and the Truth
Maintenance System (TMS), A description of each module is given below.

UI is the interface to the KBIC. It can be used for updating the knowledge base, for querying, for obtaining
advice from the KBIC, or for requesting the KBIC to solve a particular problem. UI is also used ir additional
information is required from the SSO. Furthermore, UI is the module which interfaces to the tool which is used to
represent the multilevel database application discussed in section 2. KM is responsible for managing and structuring
the knowledge base. It must also ensure the consistency of the knowledge base. Any access to the knowledge base is
via KM. It has interfaces to all or the modules or the KBIC. The knowledge base stores all of the relevant
information. This includes security constraints, real-world information, heuristics, and relevant information released
to various users. IE is the heart of the KBIC. It has the potential for using a variety or inference strategics. As a
minimum, IE should be able to perform logical inrcrcnccs. Note that in a multilevel environment, there could be
different views of the same entity at different security levels. This means that the knowledge base could potentially
have conflicting information about an entity at conceptually different security levels. Thcrcrorc IE should be able to
reason across security levels. CCRS is responsible far resolving conflicts as well as determining the best choice to
take when the system is presented with different options. For example, one particular reasoning strategy could
potentially give results which conflict with another reasoning strategy. In such a situation, IE would consult CCRS
to resolve the conflict. The conflict is resolved by CCRS querying cither the KM or even the SSO if necessary.
TMS is the module that is responsible for maintaining the consistency of the various beliefs. Such a module is
necessary for nonmonotonic reasoning.

User Interface (UI)

Knowledge
Manager (KM)

z
Truth Maintenance
System (TMS)

Inference
|{nginc (IV.)

Knowledge
Hase

Conflict and
Contention
Resolution
System (CCRS)

Figure 4. Modules of the KBIC

3.3 KNOWLEDGE REPRESENTATION

The knowledge representation scheme used by the KBIC is a combination or frames and rules. Frames arc ideal
to represent structured knowledge. The inheritance mechanism in frames is a powerful one which enables the
representation or generic entities, as well as instantiations or the generic entities. The frames used to represent the
knowledge arc called knowledge frames. Each knowledge frame describes a generic entity or a specific instance or a
generic entity. A knowledge frame has many slots associated with it. Each slot describes some property or the entity
represented or it could have rules or security constraints associated with it

Every knowledge frame has one slot which specifics the security level at which the knowledge frame is true.
Furthermore, since users at different levels could have different views or the same entity, frames at different levels arc
used to represent such views. Figure 5 shows Unclassified and Secret knowledge frames which have information on
the ship CHAMPION. Since CHAMPION is a ship, it inherits information from the knowledge frame which has
information on the generic entity SHIP. Each knowledge frame also has real-world information and security
constraints associated with it. Note that whenever the word "inherit" is used for a slot, it means that the value for
that slot is inherited from the knowledge frame representing the generic entity of the specific instance.

322

Name, of Entity: SHIP;
Entity Type: Generic
.Security Ixvcl: Unclassified
Information in Database: Ship*. Ship-name, Mission*
Other Information: None
Security Constraints: None
Instances: CHAMPION.

Name of Entity: CHAMPION;
Entity Type: instance of SI IIP
Security l.cvcl: Unclassified
Information in Database: Inherit
Other Information:

(i) The destination is Greece
(ii) If destination is Libya there will be war

(iii) If ship is in the Pacific, then it cannot go to Libya.
(iv) Inherit

Security Constraints: If destination is Libya then all mission
related information of CHAMPION is Secret

Name or Entity: CHAMPION;
Entity Type: Instance of SHIP
Security IJCVCI: Secret
Information in Database: Inherit
Other Information:

(i) The destination is Libya
(ii) If destination is Libya there will be war

(iii) If ship is in the Pacific, then it cannot go to Libya.
(iv) Inherit

Security Constraints: Inherit

Figure 5. Knowledge Frames

NamcofP.ntity: CHAMPION
Entity Type: SHIP
Security Level: Unclassified
Location: Mediterranean Sea
Date: June 16, 1990
Destination: Greece
Carries: Passengers
Captain: Smith

Name of Entity: CHAMPION
Entity Type: SHIP
Security Level: Secret
Location: Mediterranean Sea
Date: June 16,1990
Destination: Libya
Carries: Spark
Captain: Smith

Name of F.ntity: Smith
Entity Type: Captain
Security Level: Unclassified
Skills: 20 Years Experience

Name of Entity: Smith
Entity Type: Captain
Security Level: Secret
Skills: Battle Management

Name of Entity: Spark
Entity Type: Weapon
Security Level: Secret
Weapon Type: Explosive

Figure 6. Transformed Knowledge Frames

In addition to representing knowledge as frames, rules are also used to represent some or the knowledge such a.

ZEX&SmFdat3, "d connicl nxso,u,ion-The m*°could * v*•in a •»££- 5EE211

323

Representing the multilevel database applications as well as the input from the MLS/DBMS in the form or
frames and rules may not be straightforward for complex applications. Therefore, representing the application first
using conceptual structures such a conceptual graphs will case the burden placed o the knowledge engineer. The tool
which represents the multilevel database application described in section 2 bridges the semantic gap between the world
and the knowledge base. Furthermore, tools have been developed to transform applications represented using
conceptual structures into frames and rules [SOWA84J. In figure 6, we show how the graph of figure 2 may be
represented as a collection of frames.

3.3 RKASONING

The KBIC uses rule-based reasoning and frame-based reasoning. In addition, it also reasons across security
levels. Some of the essential points arc discussed in this section. In order for the inference controller to be effective
it must also reasoning under uncertainly and utilize additional inference strategics such as inductive and heuristic
reasoning. Such reasoning techniques will be part of the future investigation.

Rule-based reasoning techniques include forwards chaining, backward chaining, and hybrid approaches. We
illustrate how security violations via inference may be delected with a simple example. Consider an Unclassified rule
base consisting of the following two rules:
Rl: CHAMPION is a warship
R2: If X is a warship, its mission is Secret
R3: CHAMPION'S mission is Iraq Crisis
Suppose an unclassified user is given the information Rl and R2. Then this release of information must also be
recorded in the knowledge base (by KM). IE could reason as follows: since CHAMPION is a warship, using rule
R2, its mission is Secret. Since CHAMPION'S mission is Iraq crisis, this mission must be kept Secret. Since
CHAMPION'S mission has been given to an Unclassified user, a security violation has occurred.

As slated in [FROS86I, the problem solving technique used by frame-based systems is "matching." Given
some information about an entity in the real world, the system will try to match the values associated with the entity
with the slot values of frames. We illustrate how security violations via frame-based inference could occur with a
simple example. Consider an Unclassified frame which describes all of the properties of a passenger ship named
CHAMPION. Suppose OHIO is another ship and there is a security constraint that classifies all properties of OHIO
at the Secret level. There is also an Unclassified rule which slates that OHIO and CHAMPION arc similar. From
this rule, an Unclassified user could infer some of the Secret properties of OHIO. Therefore, one should classify the
Tact that OHIO and CHAMPION arc similar at least at the Secret level.

As stated in section 3.1, IE should be able to reason across security levels. In the example of figure 5, when
IE is reasoning at the Unclassified level (i.e. to detect/prevent unauthorized inferences that users at the Unclassified
level could make) it considers the knowledge frame on CHAMPION at Unclassified level. If it is reasoning at the
Confidential level, then it still considers the knowledge frame at the Unclassified level, as there is no knowledge
frame on CHAMPION at the Confidential level. If it is reasoning at the Secret level, then it could do one of the
following:
• Consider only the knowledge frame on CHAMPION at the Secret level.
• Consider both the knowledge frames on CHAMPION at the Unclassified and Secret levels.
• Consult with CCRS as to which frame to consider.
A simple solution would be to take the first action. That is, assume that information at level L is more accurate than
the information at level L-1. In reality, however, information at a lower level could be more accurate. For example,
information at a lower level could be more current than the one at the higher level. CCRS could resolve the conflicts
either by (i) checking the knowledge base for appropriate conflict resolution rule, (ii) querying the user to give more
up-to-date information, (iii) in the absence of appropriate information, make heuristic guesses based on recent
experiences, and (iv) reason using the rules of a theory such as plausibility theory [FROS86].

3.4 ISSUES ON TRUTH MAINTENANCE

TMS is the module of the KBIC that is responsible for maintaining the consistency of the various beliefs.
Such a module is necessary for nonmonotonic reasoning. In this section we discuss the essential points in extending
Doyle's Truth Maintenance System (TMS) [DOYL821 to reason in a multilevel environment.

324

In TMS, statements of belief arc called 'nodes.' Each node (or statement of belief) is assigned a security level.
If a node is assigned a security level L, then it can be IN or OUT with respect to any level JL. A node is IN with
respect to L if it is believed to be true at L. Otherwise, the node is OUT. Each node at level L has a set of
justifications linked to it with respect to each security level that dominates L. Each justification at a level L* £ L
represents a justification representing one way in which the node (i.e., the belief which corresponds to it) may be true.
If a justification at level L* is valid, then, unless that justification is explicitly made invalid at level L** (L** is the
least level which dominates L*), it is also assumed valid at level L**. A node at level L is IN with respect to level
L*£ L ir it has at least one justification valid at L*. If all justifications at level L* are not valid, then the node is
OUT with respect to L*.

We illustrate the essential points of a truth maintenance with an example. In this example, we assume that
there are only two security levels, Unclassified (U) and Secret (S). Figure 7 shows the TMS nodes and justifications
at the Unclassified level. This figure is interpreted as follows. The nodes arc numbers I through 4. Each node has
the following assertion or belief. Node 1 has the assertion "CHAMPION is a ship." This assertion has the status IN
and docs not have any justifications associated with it. Node 2 has the belief "CHAMPION sails to Japan." In order
for this belief to be IN, node 1 must be IN and node 3 must be OUT. Node 1 is IN. We will see that node 3 is OUT.
Therefore, Node 2 is IN. That is, CHAMPION sails to Japan is consistent with everything that is believed with
respect to the Unclassified level. Node 3 has the belief "CHAMPION is not a passenger ship." In order for this
bclicr to be true, node 4 must be IN. We will sec that node 4 is OUT. Therefore, Node 3 is OUT. Node 4 is a
previous assertion "CHAMPION carries explosives." It has the status OUT because it must have been retracted
earlier.

Justification

Node Status IN OUT

1. Champion is a ship IN

2. Champion sails to Japan IN 1 3

3. Champion is not a
passenger ship

OUT 4

4. Champion carries
explosives

OUT

Figure 7. Justifications at the Unclassified Level

Justification 1 Justification 2

Node Status IN OUT IN OUT

1. Champion is a ship IN

2. Champion sails to Japan OUT 1 3

3. Champion is not a
passenger ship

IN 4 5

4. Champion carries
explosives

OUT

S. Champion is a
warship

IN

Figure 8. Justifications at the Secret Level

325

Figure 8 shows ihc assertions, beliefs, and justifications at the Secret level. Here there arc two justifications
that could possibly be associated with a node. This (able is interpreted as follows. There are four unclassified nodes
(i.e., beliefs) as in the Unclassified world and one Secret node. Node 1 has the assertion "CHAMPION is a ship."
This assertion has the status IN and docs not have any justifications associated with it. Note that node 1 is assigned
the Unclassified level. Its status has not changed from the Unclassified world. Node 2 has the belief "CHAMPION
sails to Japan." In order for this belief to be IN, node 1 must be IN and node 3 must be OUT. Node 1 is IN. We
will sec that node 3 is also IN. Therefore, Node 2 is OUT. That is, CHAMPION sails to Japan is not consistent
with everything that is believed with respect to the Secret level. Note that node 2 is assigned the Unclassified level.
Its status has changed from the Unclassified world. Node 3 has the belief "CHAMPION is not a passenger ship." In
order for this belief to be true, cither node 4 must be IN or node 5 must be IN. We will sec that node 5 is IN.
Therefore, Node 3 is IN. That is, "CHAMPION is not a passenger ship" is consistent with everything that is
believed with respect to the Secret level. Note that node 3 is assigned the Unclassified level. Its status has changed
from the Unclassified world. Node 4 is a previous assertion "CHAMPION carries explosives." It has the status
OUT because it must have been retracted earlier. Note that node 4 is assigned the Unclassified level. Its status has
not changed from the Unclassified world. Node 5 is an assertion "CHAMPION is a warship." It has the status IN.
Note that node 5 is assigned the Secret level and is, therefore, not visible at the Unclassified level.

If at a later lime the assertion that "CHAMPION is a warship" is retracted in the Secret world, then the status
of node 5 becomes OUT. This would change the status of node 3 to be OUT. This would, in lum, change the status
of node 2 to be IN. It should also be noted that a TMS does not create justifications. The justifications are provided
by KM to TMS. The TMS maintains a consistent set of beliefs with respect to all security levels.

3.5 IMPLEMENTATION ISSUES

One of the ways to implement the KBIC would be to use an existing expert system shell. Commercial off-
the-shelf expert system shells such as G2 (product of Gcnsym Inc.) arc now available. Many of these shells handle
knowledge bases represented as frames and rules. While using a commercial shell has obvious advantages, such as
reduced implementation time and effort, it may not be tailored to solve special problems. That is, one has to contend
with the reasoning strategics implemented by the inference engine of the shell. Any additions and/or enhancements to
the reasoning strategics may be quite complex to implement. Also, one would need the source code of the shell to
make these enhancements. Therefore, unless we can find a shell that can specifically handle the reasoning strategics
of the KBIC, this may not be a desired approach. Another approach is to implement the KBIC in a conventional
language such as C. While implementation in C has obvious advantages with respect to efficiency, some of the
complex reasoning strategics and data structures may be difficult to implement.

A third approach is to use an AI language such as Lisp or Prolog. While both languages have their advantages
and disadvantages, since we arc mainly interested in handling the inference problem in a relational database
management system, the preferred language seems to be Prolog. This is because there is a natural relationship
between the Prolog data model and the relational data model. In fact, a relational database is a Prolog program
[LLOY87]. Prolog interfaces to relational database systems are increasing [LI84, ICOT87]. Furthermore, all of the
essential features of the KBIC, such as reasoning under uncertainty, truth maintenance, and handling frame and rule-
based representations, can be implemented in Prolog (see for example the discussion in [MERR89]). For these
reasons, Prolog may be an appropriate language to implement the KBIC.

4. SUMMARY AND FUTURE CONSIDERATIONS

In this paper, we have described the inference problem in multilevel database management systems, identified
the needs for knowledge-based inference control, and discussed the issues involved in developing a knowledge-based
inference controller. Building a knowledge-based inference controller is a two-step process. The first step is to
represent the multilevel database application. The second step is to develop techniques for reasoning about the
application. We first proposed the use of conceptual structures, such as conceptual graphs, for representing the
application. Such a scheme was proposed as it was a natural way to model the world and it had the full power of first
order logic. Then we described the essential points of the module which reasons with the knowledge represented in
the from of frames and rules. In order for the inference controller to function effectively, the knowledge represented as
a collection of conceptual graphs must be transformed into frames and rules.

326

The developments in artificial intelligence techniques show much promise for the design and development of
inference controllers. There is still much work to be done on knowledge representation, knowledge transformation,
reasoning under uncertain and incomplete information, and handling different types of inference strategics that users
could utilize to draw unauthorized inferences.

ACKNOWLEDGMENT

We thank William Ford for useful discussions on knowledge-based inference control. We also thank Rac Burns,
Penny Chase, Deborah Contc, and William Ford for their comments on this paper. We gratefully acknowledge the
Department of the Navy (SPAWAR) for sponsoring our initial investigation on the use of knowledge-based
techniques for handling the inference problem under contract F19628-89-C-0001.

REFERENCES

IBINN92) Binns, L., August 1992, Inference Through Secondary Path Analysis," Proceedings of the 6th IFIP
Working Conference in Database Security, Vancouver, British Columbia.

[BUCZ891 Buczkowski, L. J., and E. L. Perry, February 1989, Database Inference Controller, Interim Technical
Report, Ford Aerospace Corporation.

[COLL90] Collins, M., October 1990, Design and Implementation of a Secure Update Processor, Technical Report
MTR10977, The MITRE Corporation (a version published in the Proceedings of the 7lh Computer Security
Applications Conference - coauthors: W. Ford and B. Thuraisingham).

[DOYL82] Doyle, J., 1982, "A Truth Maintenance System," Artificial Intelligence Journal, Vol. 12.

[FORD901 Ford, W. R., J. O'Kccffc, and B. Thuraisingham, August 1990, Database Inference Controller: An
Overview, Technical Report MTR 10963 Vol. 1, The MITRE Corporation.

[FROS86] Frost R., 1986, Introduction to Knowledge-Base Management Systems, Collins, London.

[GARV921 Garvcy, T, et al, August 1992, Toward a Tool to Detect and Eliminate Inference Problems," Proceedings
of the 6lh IFIP Working Conference in Database Security, Vancouver, British Columbia

[HINK88] Hinkc, T., April 1988, "Inference Aggregation Detection in Database Management Systems," Proceedings
of the IEEE Symposium on Security and Privacy.

[HINK921 Hinkc T., and H. Dclugach, August 1992, "Aerie: An Inference Modeling and Detection Approach for
Databases," Proceedings of the 6th IFIP Working Conference in Database Security, Vancouver, British Columbia.

[ICOT87] [ICOT87] "ICOT Project," 1987, New Generation Computing Journal, Vol. 5.

[LENA89] Lenat, D., and R. Guha, 1989, "Building Large Knowledge-Based Systems," Addison Wesley, MA.

[LI84] Li, D., 1984, A Prolog Database System, Research Studies Press, John Wiley and Sons, London.

[LLOY871 Lloyd, J., 1987, Foundations of Logic Programming, Springer Vcrlag, Heidelberg, Germany.

[MERR89] Merrill, D., 1989, Building Expert Systems In Prolog, Springer Verlag, New York.

[SELL92] Sell, P., August 1992, "The Spear Data Design Method," Proceedings of the 6th IFIP Working Conference
in Database Security, Vancouver, British Columbia.

[SMIT90] Smith, G., May 1990, "Modelling Security-Relevant Data Semantics," Proceedings of the 1990 IEEE
Symposium on Security and Privacy, Oakland, CA.

327

[SOWA84] Sowa, J., 1984, Conceptual Structures: Information Processing in Minds and Machines, Reading, MA:
Addison Wesley.

[THUR90a] Thuraisingham, B„ June 1990, "Recursion Theoretic Properties of the Inference Problem in Database
Security," Presented at the Third IEEE Computer Security Foundations Workshop, Franconia, NH (also available as
MITRE Technical Paper MTP-291).

[THUR90b] Thuraisingham, B., August 1990, "The Use of Conceptual Structures to Handle the Inference
Problem," M90-55, The MITRE Corporation (a version also published in the Proceedings of the 5th IFIP Working
Conference in Database Security).

[THUR91a] Thuraisingham, B„ April 1991. "Handling Security Constraints during Multilevel Database Design,"
Proceedings of the 4lh RADC Database Security Workshop, Little Complon, RI.

[THUR91b] Thuraisingham, B., and W. Ford, October 1991, "Issues on the Design and Implementation of an
Intelligent Database Inference Controller," Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Charlottesvillc, VA.

[ULLM88] Ullman, J., 1988, Principles of Database and Knowledge-Base Systems, Computer Science Press,
Rockville, MD.

328

A LATTICE INTERPRETATION OF THE
CHINESE WALL POLICY

Ravi S. Sandhu1

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, Virginia 22030

Abstract. The typed access matrix (TAM) model was recently denned by Sandhu.
TAM combines the strong safety properties for propagation of access rights obtained in
Sandhu *s Schematic Protection Model, with the natural expressive power of Harrison,
Russo, and Ullman's model. In this paper we consider the implementation of TAM in
a distributed environment. To this end we propose a simplified version of TAM called
Single-Object TAM (SO-TAM). We illustrate the practical expressive power of SO-TAM
by showing how the ORCON policy for originator control of documents can be specified in
SO-TAM. We provide arguments to support our conjecture that SO-TAM is theoretically
as expressive as TAM. We show that SO-TAM has a simple implementation in a typical
client-server architecture. Our design is based on access control lists as the principal
means for enforcing access to subjects and objects. In addition, certificate servers are
introduced for generating certificates for checking access rights in those cases where
access control lists are insufficient. A major advantage of our design is that atomicity of
operations does not require a distributed commit.

Keywords: Access Matrix, Distributed Systems, Secure Architectures, ACLs, Certificates

1 INTRODUCTION

Distributed systems have become the prevalent mode of computing. Modern systems offer a great
deal of flexibility in tailoring a user's environment. The physical distribution of data and other
resources can be made as transparent as a user wishes. It is important that security researchers and
practitioners provide similar flexibility with respect to access control mechanisms.

To provide flexibility in access control we first need a flexible model which can express a rich
variety of security policies. In our opinion flexibility is achieved by allowing users to propagate access
rights to other users, with a combination of discretionary and mandatory controls. We would like
to give individual users as much discretionary choice as possible, within the constraints required to
meet the overall objectives and policies of an organization. For example, members of a project team
might be allowed to freely share project documents with each other, but only the project leader is
authorised to allow non-members to read project documents.

Security models based on propagation of access rights must confront the safety problem. In its
most basic form, the safety question for access control asks: is there a reachable state in which a
particular subject possesses a particular right for a specific object? There is an essential conflict
between the expressive power of an access control model and tractability of safety analysis. The
access matrix model as formalized by Harrison, Ruzzo, and Ullman (HRU) [5] has very broad
expressive power. Unfortunately, HRU also has extremely weak safety properties.

Recently Sandhu [9] has shown how to overcome the negative safety results of HRU by introducing

'This work WM partially supported by the National Security Agency through contract MDA904-92-C-5141.

© 1902 Ravi S. Sandhu

329

Largely due to this dynamic aspect, Brewer and Nash claim that the Chinese Wall policy "cannot
be correctly represented by a Bell-LaPadula model." One objective of our paper is to dispute this
claim, by showing how the Chinese Wall policy is just another example of a lattice-based information
flow policy which can be easily represented within the Bell-LaPadula framework.2

Another objective of our paper is to show the vital importance of distinguishing security policy
as applied to human users versus security policy as applied to computer subjects. Brewer and Nash
fail to make this distinction. They treat users and subjects as synonymous concepts. As a result
their model is much too restrictive to be employed in a practical system. By maintaining a careful
distinction between users, principals and subjects, we develop a model for the Chinese Wall policy
which addresses threats from Trojan Horse infected programs. The Brewer-Nash model on the other
hand makes a futile attempt to safeguard against malicious consultants.

The rest of this paper is organized as follows. Section 2 reviews the distinction between users,
principals and subjects in a computer system. Section 3 discusses the Chinese Wall policy and the
threats that it addresses. We carefully distinguish between threats posed by malicious consultants
versus threats posed by Trojan Horse infected programs. While computer security can address
threats posed by Trojan Horse infected programs, it cannot fully address threats posed by malicious
consultants. After all, consultants who choose to share information in violation of Chinese Walls can
do so equally efficiently by communication means outside of the computer system. With this context
we analyze the Brewer-Nash model in section 4 and show that this model is unduly restrictive. In
section 5 we develop a lattice-based model for the Chinese Wall policy and relate it to the Bell-
LaPadula model. Section 6 concludes the paper.

2 USERS, PRINCIPALS AND SUBJECTS

To understand the Chinese Wall policy and its nuances with respect to subjects versus human users,
we must first understand the distinction between users, principals and subjects. This distinction is
fundamental to computer security and goes back to the beginnings of the discipline. Nevertheless,
it is often dealt with imprecisely in the literature leading to undue confusion about the objectives
of computer security.

2.1 Users

We understand a user to be a human being. We assume that each human being known to the system
is recognized as a unique user. In other words the unique human being Jane Doe cannot have more
than one user identity in the system. If Jane Doe is not an authorized user of the system she has
no user identity. Conversely, if she is an authorized user she is known by exactly one user identity,
say, JDoe. Clearly this assumption can be enforced only by adequate administrative controls, which
we assume are in place. It should be noted that violation of this requirement is often the cause of
security violations in current systems.

2.2 Principals

Our concept of principal is adapted from Saltzer and Schroeder [6]. Each user may have several
principals associated with the user. On the other hand each principal is required to be associated
with a single user.

3 In fairness to Brewer and Nash it should be noted that the original Bell-LaPadula model it inadequate to express
the Chinese Wall policy. The model given here does require (i) a careful distinction between users, principals and
subjects, and (ii) the concept of user labels which "float up" versus labels on principals, subjects and objects which
do not change.

330

The motivation in [6] for this concept was that different principals would correspond to, say,
different projects on which the user works. Every time a user logs in to the system it is as a
particular principal. Thus if Jane Doe was assigned to projects Red and Blue, she would have three
principals associated with her user identity, say, JDoe, JDoe.Red and JDoe.Blue. On any session
Jane could login as any one of these principals, depending on the work she planned to do in that
session. Each principal associated with JDoe obtains a different set of access rights. Thus JDoe.Red
has access to the files and other objects of project Red, but not project Blue. Similarly, JDoe.Blue
has access to the files and other objects of project Blue, but not project Red. The principal JDoe is
a generic principal for Jane allowing access to her personal files, but not to any of the project files.

The notion of principal reflects the everyday reality that individuals wear several different "hats"
in an organization, with their authority and responsibility determined by the particular "hat" they
are wearing at a given moment. Saltier and Schroeder introduce principals in a discretionary context.
The concept carries over equally well to mandatory policies. We often encounter phrases such as,
"the top-secret user John logs in at the secret level," in the security literature. What are we to make
of this statement? In the user-principal terminology we interpret this statement as follows:

• Firstly, there is a unique user John, cleared to top-secret, independent of the level at which
John logs in.

• Secondly, John can log in at every level dominated by top-secret. At each of these levels there
is a separate principal associated with John. So John.top-secret is the principal when John
logs in at top-secret, John.secret is the principal when John logs in at secret, etc.

We will see that this concept of a principal is the key to achieving lattice-based enforcement of
Chinese Walls.

2.3 Subjects

We understand a subject to be a process in the system, i.e., a subject is a program in execution.
Each subject is associated with a single principal on behalf of whom the subject executes. In general
a principal may have many subjects associated with it concurrently running in the system.

For simplicity we assume that a subject executes with all the privileges of its associated principal.3

Thus when Jane Doe logs in as JDoe.Red and invokes her favorite editor Emacs, a subject associated
with JDoe.Red is created and runs the Emacs code. This subject acquires all the access rights of the
principal JDoe.Red. Similarly when John logs in as John.top-secret every subject spawned during
that session runs at the top-secret level.

To summarize

• each authorized human user is known as a unique user to the system,4

• each user can log in as one of several principals but each principal is associated with only one
user, and

• each principal can spawn several subjects but each subject is associated with only one principal.
3 This is the actual situation in most existing systems, including those specifically designed for security. More

generally a subject could be created with a proper subset of privileges of its associated principal. The most general
case is to allow a subject to have multiple parents, from each of whom it obtains some privileges.

* This requirement is admittedly violated in many systems, and will require administrative controls outside of the
computer system. Nevertheless, without this requirement there is little scope for enforcing aggregation policies such
as Chinese Walls. Moreover, it is also a prerequisite for enforcing separation of duties.

331

Company Information

Conflict of
Interest
Class i

Conflict of
Interest
Class j

Company i.l Company i.m Company j.l Company j.n

Figure 1: Company Information in the Chinese Wall Policy

3 THE CHINESE WALL POLICY

The Chinese Wall policy is intuitively simple and easy to describe. In this section we describe this
policy by adapting the description of Brewer and Nash [2] and adding additional concepts to it.
It is important to keep in mind that we are deliberately ignoring all discretionary access control
issues in this paper. In practice the Chinese Wall policy as described here would be the mandatory
component of a larger policy which includes additional discretionary controls (and possibly additional
mandatory controls).

We begin by distinguishing public information from company information. There are no manda-
tory controls on reading public information. Reading company information on the other hand is
subjected to mandatory controls, which we will discuss in a moment. The policy for writing public
or company information is derived from its consequence on providing possible indirect read access
contrary to the mandatory read controls. It is in this respect that users and subjects must be treated
differently. We will consider mandatory controls on writing information following our discussion of
the read controls.

The motivation for recognizing public information is that a computer system used for consulting
services will inevitably have large public databases for use by consultants. Moreover, public infor-
mation allows for desirable features such as public bulletin boards and electronic mail which users
expect to be available in any modern computer system. Public information can be read by all users,
principals and subjects in the system (restricted only by discretionary controls which, as we have
said, we are ignoring in this paper).

Company information is categorized into mutually disjoint conflict of interest classes as shown
in figure 1. Each company belongs to exactly one conflict of interest (COI) class. The Chinese Wall
policy requires that a consultant should not be able to read information for more than one company
in any given COI class. To be concrete let us say that COI class i consists of banks and COI class j
consists of oil companies. The Chinese Wall stipulation is that the same consultant should not have
read access to two or more banks or two or more oil companies.

The Chinese Wall policy has a mix of free choice and mandated restrictions. So long as a

332

consultant has not yet been exposed to any company infoimation about banks, that consultant has
the potential to read infoimation about any bank. The moment this consultant reads, say, bank
A information, thereafter that consultant is to be denied read access to all other banks. The free
choice of selecting the first company to read in a COI class can be exercised once and is then forever
gone (or at least gone for a sufficient length of time to avoid conflict of interest).

So long as we have focussed on read access the Chinese Wall policy has been easy to state and
understand. When we turn to write access the situation becomes more complicated and subtle.
This is the usual case with confidentiality policies. For example, the simple-security rule of the well-
known Bell-LaPadula model [1] is similarly intuitive and straightforward whereas the ^-property
(which prohibits write down) is more subtle.

In computer security it is easy to confuse the threat from malicious users with the threat from
malicious subjects. In the Bell-LaPadula model, mandatory controls on write access are imposed to
prevent Trojan Horse infected subjects from leaking information contrary to the system policy. These
controls do not address the threat of malicious human users. It should always be kept in mind that
a malicious user can compromise information confidentiality by employing communication means
outside of the computer system. Thus John as a human being cleared to top-secret is nevertheless
able to write and publish unclassified documents. This is because John is trusted not to leak top-
secret information in his unclassified writings. On the other hand malicious subjects executing with
John's top-secret privileges can leak top-secret information if not constrained by the ^-property.

In much the same way a computer system cannot solve the problem of a malicious consultant. A
determined consultant can leak damaging confidential information about a company to, say, the Wall
Street Journal by means of a telephone call. Similarly, a consultant can provide insider company
information directly to its competitors or share this information with other consultants. Just as
our top-secret user John is trusted not to divulge secrets, so must our consultants be trusted as
individuals not to break Chinese Walls.

4 THE BREWER-NASH MODEL

We now consider the Brewer-Nash model for the Chinese Wall policy. In this model data is viewed
as consisting of objects each of which belongs to a company dataset. The company datasets are
categorised into conflict of interest (COI) classes, along the lines of 1.

The Brewer-Nash model does not distinguish users, principals and subjects. It uses the single
concept of subject for all three notions. This leads them to propose the following mandatory rules.

1. BN Read Rule: Subject S can read object O only if

• O is in the same company dataset as some object previously read by S (i.e., O is within
the wall), or

• O belongs to a COI class within which S has not read any object (i.e., O is outside the
wall).

2. BN Write Rule: Subject S can write object O only if

• S can read O by the BN read rule, and

• no object can be read which is in a different company dataset to the one for which write
access is requested.

We have called these the BN read rule and BN write rule for ease of reference. They are analogous
to the simple-security and ^-properties of the Bell-LaPadula model.

333

The BN read rule conveys the dynamic aspect of the Chinese Wall policy. This rule clearly
applies to the human users, viz., the consultants, in the system. Since the Brewer-Nash model does
not distinguish between users and subjects, this rule is also applied to all subjects in the system.

The BN write rule is brought in to prevent Trojan Horse laden subjects from breaching the
Chinese Walls. To see its motivation consider that consultant John has read access to Bank A
objects and Oil Company OC objects, and that consultant Jane has read access to Bank B objects
and Oil Company OC objects. Individually John and Jane are in compliance with the Chinese Wall
policy. Now suppose John is allowed write access to OC objects. A Trojan Horse infected subject
running with John's privileges can thereby transfer information from Bank A objects to OC objects.
These OC objects can be read by subjects running on behalf of Jane, who then has read access to
information about Bank A and Bank B.s

The BN write rule is successful in preventing such information leakage by Trojan Horses. How-
ever, it does so at an unacceptable cost. It is easy to see that the BN write rule has the following
implication.

• A subject which has read objects from two or more company datasets cannot write at all.

• A subject which has read objects from exactly one company dataset can write to that dataset.

These implications are clearly unacceptable (if the computer system is to be used for something
more than a read-only repository of confidential information). Under this regime a consultant can
work effectively so long as he or she is assigned to exactly one company. The moment the consultant
is assigned to a second company, he or she will be unable to write any information into the system.

Fortunately these implications are not inherent in the Chinese Wall policy. They are rather
a consequence of the Brewer-Nash model's failure to distinguish rules applied to users from rules
applied to subjects. The key observation is that we can live with the implications listed above with
respect to subjects, but not with respect to users. In particular, limiting every subject to reading
and writing a single company dataset is an acceptable restriction. Thus, any subject executing
on behalf of John should either be able to read and write Bank A objects, or read and write Oil
Company OC objects. John as a human being is, however allowed to read and write both Bank
A and Oil Company OC objects. For that matter, John is also allowed to read and write public
objects. However, he is not allowed to do all of these actions using the same subject.

5 A LATTICE INTERPRETATION

In this section we provide a lattice-based interpretation of the Chinese Wall policy. It was shown by
Denning [3] that information flow policies in general require that objects be labeled with a lattice
structure. Denning's result is derived from the following axioms.

1. Information flow is reflexive, transitive and symmetric.

2. There is a lowest class of information which is allowed to flow into all other classes.

3. For any two classes of information A and B there is a class C which is the least upper bound of
A and B (i.e., (i) information from both A and B can flow to C, and (ii) for all classes D such
that information can flow from both A and B it is the case that information can flow from C
toD).

6 Note that Computer Security cannot do anything to prevent John and Jane from exchanging Bank A and Bank B
information outside of the computer system. But in tuch an exchange John and Jane are accomplice!. In the example
given here John it not an accomplice but rather an unwitting victim of a Trojan Hone.

334

These axioms are generally accepted as being veiy reasonable.6 Now there is nothing in the Chinese
Wall policy that is contrary to these axioms. We will bear out this claim by showing how we can
construct a lattice structure for the Chinese Wall policy. We do so by defining a number of axioms
below.

5.1 The Lattice Structure for Chinese Walls

Let us begin by introducing the conflict of interest classes and companies.

Al. There are n conflict of interest classes: COIi, COI2, • ••, COIn.

A2. COIi = {1,2,... , m*}, for i — 1,2, ...n, i.e., each conflict of interest class COIi consists of m*
companies.

In other words there are n conflict of interest classes, each of which contains some number of
companies as visually depicted in figure 1.

We propose to label each object in the system with the companies from which it contains infor-
mation. Thus an object which contains information from Bank A and Oil Company OC is labeled
{Bank A, Oil Company OC}. Labels such as {Bank A, Bank B, Oil Company OC} are clearly
contrary to the Chinese Wall policy. We prohibit such labels in our system by defining a security
label as an n-element vector [ij, i2,..., in], where each i* € COIi, or it = ±.

An object labeled [ii, ij,.. • ,in] is interpreted as signifying that it contains information from
company ii of COIi, company i2 of COI2 and so on. When an element of the vector is ± rather
than an integer, it means that the object has no information from any company in the corresponding
conflict of interest class. For example, an object which contains information only from company 4
in COI3 will be labeled with the vector [J_, J_, 4, ±,..., ±], i.e., all elements other than the third one
will be ±. Similarly, an object which contains information from company 7 in COIi and company
5 in COIA will be labeled with the vector [J_, 7, ±, 5, ±,..., J.].

This leads us to the following definition for the set of labels.

A3. LABELS = {[iu i2,..., i»]|»i G COI[, i2 G COI'2,..., i„ G COI'n} where COI[= COIi U {±}

Note that the label which has all _L elements naturally corresponds to public information. There is,
however, no naturally occurring system high label (in fact such a label is contrary to the Chinese
Wall policy). In order to complete the lattice we introduce a special label for system high (which
we will not assign to any subject in the system).

A4. EXTLABELS = LABELS U {SYSHIGH}

Next we define the dominance relation among labels as follows, where the notation li[ik] denotes
the u-th element of label 1%.

A5. (VJx./a G LABELS)[h > l2 o (Vit = 1,.. ..njpjft] = l3[i»] V l2[ik] = _L]]

In other words, l\ dominates l2 provided that l\ and l2 agree wherever l2 ^ ±. For example
[1,3,2] > [1,3,X], [1,3,1] > [J-,J_, 1] while [1,3,2] and [1,2,3] are incomparable. Note that every
label dominates the system low label which consists of all J elements. To account for the special
system high label we have the following axiom.

A6. (VI G EXTLABELS)[SYSHIGH > I]

'Some researchers have tried to relax them further, for instance by dropping the transitive requirement on infor-
mation flow, but in the main the security community has accepted these.

335

To complete the lattice structure it remains to define the least upper bound operator. In order
to do so we introduce the following notion.

A7. li,l2 € LABELS are compatible if and only if for all Jb = 1 n, h[ik] = Z2[t»] V Zj [ik] =
±Vl2[ik] = ±

In other words, two label are compatible if wherever they disagree at least one of them is -L. Note
that if Zi > l2 then h and l? are compatible. Labels which are incomparable with respect to the
dominance relation may or may not compatible, e.g., [1,3,2] and [1,2,3] are incompatible while
[1,-L, 2] and [1,2, ±] are compatible.

Incompatible labels cannot be legitimately combined under the Chinese Wall policy. This is
expressed by the following axiom.

A8. If Zj is incompatible with l2 then lub{lltl2) = SYSHIGH

For compatible labels the least upper bound is computed as follows.

A9. if Zi is compatible with Za then lub(h, l2) = l3 where l3[ik] = J i1!**] jj^H^ ±

For example, the least upper bound of [1,-L, 2] and [1,2,1] is [1,2,2]. Finally to complete the
definition with respect to the special system high label, we have the following axiom

A10. (VZ € EXTLABELS)[lub(SYSHIGH,l) = SYSHIGH]

It is easy to verify that the axioms Al to A10 define a lattice on the set of labels EXTLABELS
with dominance relation >. Information flow occurs in the direction opposite to the dominance
relation and is obviously reflexive, transitive and symmetric. The required system low class is
identified by the label consisting of all ± elements, and the least upper bound operator has been
defined.

Figure 2 shows a lattice with two conflict of interest classes, each with two companies in it. The
lattice is shown by its Hasse diagram, in which the dominance relation goes from top to bottom
with transitive and reflexive edges omitted.

5.2 Chinese Wall Model

Given this lattice structure we have developed, let us see how we can solve the Chinese Wall problem.
To be concrete we describe our solution in terms of the specific lattice of figure 2. The solution is,
however, completely general and applies to any size Chinese Wall lattice.

We require every object in the system to be labeled by one of the labels in figure 2. Public
objects are labeled [X, _L]. Objects with company information from a single company are labeled as
follows:

• [1,-L]: objects with information for company 1 in COI\.

• [2, J.]: objects with information for company 2 in COI\.

• [±, 1]: objects with information for company 1 in COI2.

• [JL,2]: objects with information for company 2 in COI2.

Objects with company information from more than one company (without violation of Chinese
Walls) are labeled as follows:

336

SYS HIGH

[1,1] [1,2] [2,1] [2,2]

[1,1.] [2,1] [1,1] [±,2]

[-L7-L]

Figure 2: Example of a Chinese Wall Lattice

• [1,1]: objects with information for company 1 in COI\ and company 1 in COI2.

• [1,2]: objects with information for company 1 in COI\ and company 2 in COIj.

• [2,1]: objects with information for company 2 in COI\ and company 1 in COI^.

• [2,2]: objects with information for company 2 in COIi and company 2 in COIi.

Objects labeled SYSHIGH violate the Chinese Wall policy, in that they can combine information
from any subset of the companies. These objects are inaccessible in the system (and therefore might
as well not exist).

Now let us consider labels on users, principals and subjects. We treat the label of a user as a
high-water mark which can float up in the lattice but not down. A newly enrolled user in the system
is assigned the label [1, X].7 As the user reads various company information the user's label floats
up in the lattice.8 For example, by reading information about company 1 in conflict of interest class
1 the user's label is modified to [1, 1]. Reading information about company 2 in conflict of interest
class 2 further modifies the user's label to [1,2].

This floating up of a user's label is allowed, so long as the label does not float up to SYSHIGH.
Operations which would force the user's label to SYSHIGH are thereby prohibited. The ability

rThii assume* that the user is entering the system with a "clean slate." A user who has had prior exposure to
company information in some other system should enter with an appropriate label reflecting the extent of this prior
exposure.

' The exact manner in which a user's label is allowed to float up is an issue of implementation. If the users have
complete freedom in this respect, the proposed read access could be specified at the time of login. The system could
then create a suitable principal for that user session. On the other hand one might constrain this by discretionary
access controls which we have ignored in this paper. For instance, a user may be allowed to read only that company
information which the user's boss assigns him or her to. In this case the float up of a user's label is effectively done
by some other user. Full consideration of such discretionary policies and their interplay with the mandatory policy,
would require a model such as the Typed Access Matrix [7].

337

to float a user's label upwards9 addresses the dynamic requirement of the Chinese Wall policy. The
floating label keeps track of a user's read operations in the system.

With each user we associate a set of principals, one at each label dominated by the user's label.
Thus, if Jane as a user has the label [1,1], she has the following principals associated with her:
Jane.[l, 1], Jane.[l,.L], Jane.fl, 1] and Jane.[±,JL]. Each of these corresponds to the label with
which she wishes to log in on a given session. These principals have fixed labels which do not
change. The floating up of a user's label corresponds to creation of one or more new principals for
that user. For example, when Jane had the label [1, _L], she had only two principals associated with
her, viz., Jane.[l, J_] and Jane.[±,±]. When Jane's label floated up to [1,1], she acquired two new
principals Jane.[l, 1] and Jane.[l_, 1]. This floating up of Jane's label is achieved by Jane's directive
to the system. The system will allow this action only if the float up is to some label strictly below
SYSHIGH.

Each principal has a fixed label. Every subject created by that principal inherits that label.
Thus, all activity in the system initiated by Jane.[l, 1] will be carried out by subjects with the label
[1, _L]. The label of a subject is determined by the label of the principal who creates that subject.
A subject's label remains fixed for the life of that subject.

All read and write operations in the system are carried out by subjects. These subjects are
constrained by the familiar simple-security and -^-properties of the Bell-LaPadula model. That is a
subject can only read objects whose labels are dominated by the subject's label, and can only write
objects whose labels dominate the subject's label.

Now suppose that Jane logs in as the principal [1,1.]. All subjects created during that session
will inherit the label [1,-L]. This will allow these subjects to read public objects labeled [-L,_L],
to read and write company objects labeled [1,-L], and write10 objects with labels [1,1], [1,2] and
SYSHIGH.

6 CONCLUSION

In this paper we have given a lattice interpretation of the Chinese Wall policy of Brewer and Nash [2].
In doing so we have disputed11 their claim that the Chinese Wall policy "cannot be correctly repre-
sented by a Bell-LaPadula model." We have also shown that the Brewer-Nash model is too restrictive
to be employed in practice, since it essentially prohibits consultants from adding new information
into the system. By maintaining a careful distinction between users, principals and subjects, we
developed a model for the Chinese Wall policy which addresses threats from Trojan Horse infected
programs and retains the ability of consultants to write information into the company datasets they
are analyzing. Our paper demonstrates the vital importance of distinguishing security policy as
applied to human users versus security policy as applied to computer subjects.

The lattice model we have developed for the Chinese Wall policy uses the Bell-LaPadula simple-
security and *-properties. In this sense it is consistent with the Orange Book [4]. However, the
structure of our security labels departs from the conventional military and government sector (with
their hierarchical and non-hierarchical components). A system built to Orange Book criteria can be
used to enforce Chinese Walls, provided there is some flexibility in the structure of the labels in the
system.

This float upwards doei not preterit the security problems with changing labels discussed in [5]. This is due to
the upward floating or high-water mark nature of our user labels.

10 As is often done in multilevel secure database systems, we can prohibit this "write up" if we so choose.
11 Although, see footnote 2 earlier in the paper.

338

References

[1] Bell, D.E. and LaPadula, L.J. "Secure Computei Systems: Unified Exposition and Multics
Interpretation." MTR-2997, Mitre, Bedford, Massachusetts (1975).

[2] Brewer, D.F.C and Nash, M.J. "The Chinese Wall Security Policy." IEEE Symposium on Security
and Privacy, 215-228 (1989).

[3] Denning, D.E. "A Lattice Model of Secure Information Flow." Communications of ACM
19(5):236-243 (1976).

[4] Department of Defense National Computer Security Center. Department of Defense Trusted
Computer Systems Evaluation Criteria. DoD 5200.28-STD, (1985).

[5] McLean, J. "Reasoning About Security Models." IEEE Symposium on Security and Privacy,
123-131 (1987).

[6] Saltser, J.H. and Schroeder, M.D. "The Protection of Information in Computer Systems." Pro-
ceedings of IEEE 63(9):1278-1308 (1975).

[7] Sandhu, R.S. "The Typed Access Matrix Model." Proc. IEEE Symposium on Research in Security
and Privacy, Oakland, California, May 1992, pages 122-136.

339

A Local Area Network Security Architecture

Lisa J. Camahan
National Institute of Standards and Technology

A216. Bldg. 225, Gaithersburg, MD. 20899

1 INTRODUCTION

1.1 Purpose

The purpose of this document is to describe a process that
can be used to improve the security of a local area network
(LAN). This process is a risk-based approach based on
perceived threats and vulnerabilities and considerations of
security services and security mechanisms. A LAN
security architecture is described that discusses threats and
vulnerabilities that should be examined, as well as security
services and mechanisms that should be considered.
Appropriate LAN security should aim to achieve the
following goals:

• Maintain the confidentiality of data as it is transmitted,
stored or processed on a LAN;
• Maintain the integrity of data as it is transmitted, stored
or processed on a LAN;
• Maintain the availability of data stored on a LAN, as well
as the ability to process the data in a timely fashion;
• Ensure the identity of the sender and receiver of a
message;
• Maintain the ability to transmit data in a timely fashion.

The process described in this paper has been applied to a
LAN with an agency of the federal government. A
description and outcome of this application is described in
[1].

1.2 LAN Definition

A LAN is defined in general terms as "a network that is
deployed in small geographic areas such as an office
complex, building, or campus. Typically, a LAN is owned,
operated, and managed locally rather than by a common
carrier." [2] A LAN usually, through a common network
operating system, connects servers, workstations, printers,
and mass storage devices, enabling users to share the
resources and functionality provided by a LAN. The types
of applications provided by a LAN generally include
distributed file storing, remote computing, and
messaging.[3]

• Distributed fde storing provides users transparent access
to part of the mass storage of a remote server. Distributed
file storing provides capabilities such as remote filing and
remote printing. Remote filing allows users to access,
retrieve, and store files. Generally remote filing is provided
by allowing a user to attach to part of a remote mass
storage device (a file server) as though it were connected
directly. This virtual disk is then used as though it were a
disk drive local to the workstation. Remote printing allows
users to print to any printer attached to any component on
the LAN; allowing users to utilize (and share the cost of)

high quality printers, and allow ongoing local processing.

• Remote computing refers to the concept of running an
application or applications on remote components. Remote
computing allows users to remotely login to another
component on the LAN, or remotely execute an application
that resides on another component. Remote computing also
allows a user to remotely run an application on one or more
components, while having the appearance, to the user, of
running locally. [2] The ability to run an application on one
or more components allows the user to utilize the
processing power of LAN as a whole.

• Messaging applications are associated with mail and
conferencing capabilities. Electronic mail has been one of
the most widely used capabilities available on computer
systems and across networks. A conferencing capability
allows users to actively communicate to each other,
analogous to the telephone.[3]

1J The LAN Security Problem

The advantages of using a LAN were discussed in the
previous section. However, with these advantages in
functionality come added risk to the data that is processed,
stored and communicated. Other areas of concern that can
increase risk include (1) poor LAN management and
security policies, (2) lack of training for LAN usage and
security, (3) poor protection mechanisms in the workstation
environment, and (4) the use of efficient LAN protocols.
These additional concerns are mentioned here for
completeness and will not be discussed in detail.

File servers can control users' accesses to various parts of
the file system. This is usually done by allowing a user to
attach a certain file system (or directory) to the user's
workstation, to be used as a local disk. However, two
potential problems arise with this. First, the server may
only provide access protection to the directory level, so that
a user granted access to a directory has access to all files
contained in that directory. The second problem is caused
by the lack of protection mechanisms on the local
workstation. For example, a personal computer (PC) may
provide minimal or no protection of the information stored
on it. A user that copies a file from the server to the local
drive on the PC loses the protection afforded the file when
it was stored on the server. For some types of information
this may be acceptable. However, other types of
information may require more stringent protections. This
requirement then focuses on the need for controls in the
workstation environment.

Distributed computing must be controlled so that only
authorized users may access remote components and remote
applications. Components must be able to authenticate

340

remote users who request services or applications. These
requests may also call for the local and remote
commponents to authenticate to each other. The inability
to authenticate can lead to unauthorized users being granted
access to remote components and applications.

Network protocols and topologies that do not provide a
direct, point to point path from sender to receiver, should
be recognized as a concern. Standard topologies and
protocols used today demand that messages pass through
many nodes to get to the destination. This is much
cheaper, and easier to maintain than providing a direct
physical path for every machine to every machine. (In large
LANs, direct paths may be infeasible.) Making the
information that is transmitted unintelligible becomes
apparent, considering the ease at which an intruder can
listen to the traffic as it is transmitted across the LAN.

Messaging services add additional risks to information that
is stored on a server as well as in transit. Electronic mail
that is transmitted over the LAN could easily be captured,
and perhaps altered and retransmitted, affecting both the
confidentiality and integrity of the message.

The use of personal computers in the LAN environment can
also add risk to the LAN. In general, PCs have a lack of
strong security mechanisms for authenticating users,
controlling access to files, auditing, etc. In many cases, the
protection afforded information that is stored and processed
on a LAN server does not follow the information when it
is sent locally to a PC.

The solution to providing adequate LAN security is to
provide the proper combination of security policies and
procedures, technical controls, user training and awareness,
and contingency planning. While all of these areas are
critical for providing adequate protection, the focus of this
document is on the technical controls that can be employed.
These controls can be defined by a LAN security
architecture. This architecture defines common threats to
the LAN, as well as the needed technical controls.

1.4 LAN Security Architecture Definition

In this document a LAN security architecture (which
describes the security functionalities of the LAN) is defined
by the relationships between threats, vulnerabilities, security
services and security mechanisms.

A threat can be any person, object, event, or idea that, if
realized, could potentially cause damage to the LAN.
Threats can be malicious, such as the intentional
modification of sensitive information, or can be accidental,
such as an error in a calculation, or the accidental deletion
of a file. Threats can also be acts of nature, i.e. electrical
spikes, water damage, lightning, etc.

Vulnerabilities are weaknesses in a LAN that can be
exploited by a threat. For example, unauthorized access
(the threat) to the LAN could occur by exploiting a
vulnerability such as a poor password choice made by a
user. Reducing or eliminating the vulnerabilities of the

341

LAN can reduce or eliminate the risk of the threats to the
LAN. The use of a robust password generator may reduce
the chance that a user will choose a poor password, and
thus reduce the threat of unauthorized LAN access.

A security service is the collection of security mechanisms,
procedures, etc. that are implemented on a LAN to protect
the LAN from threats. The identification and authentication
service could be designed to help protect the LAN from
unauthorized LAN access by requiring that a user identify
him/herself, and provide something else that verifies his/her
identity. A security service is only as robust as the
mechanisms, procedures, etc. that make up that service.

Security mechanisms are the controls implemented to
provide the security services that are needed to protect the
LAN. For example, a token based authentication system
(which requires that the user be in possession of a required
token) may be the mechanism implemented to provide the
identification and authentication service.

Using the relationships defined above, the LAN security
architecture describes the security functionality by
specifically:
• defining security threats and associated vulnerabilities to
the LAN.
• listing the security services and associated mechanisms
that can provide protection.
• depicting the mapping of the threats and vulnerabilities
to the required security services and mechanisms.

Therefore a LAN security architecture will consist of a set
of components where each component contains four
elements. These elements are the threat, the associated
vulnerability, the security service that helps provide
protection from the threat, and the implemented security
mechanism(s) that make up the security service.

1.5 Priorities for LAN Security

A risk analysis can be used to determine the appropriate
level of protection required for a LAN. There are many
methods that can be utilized to perform a risk analysis. This
document suggests a risk analysis process as follows:

(1) Using the LAN security architecture that will be
presented in Section 2, determine the level of risk
associated with each of the threats and the vulnerabilities
that exist;
(2) For components where the threat is associated with an
unacceptable level of risk, determine the security services
and mechanisms that would be appropriate to reduce this
risk to the LAN. This is done based on a cost justification
basis. (A detailed discussion on performing the risk analysis
is presented in Section 3, "Determining Priorities for LAN
Security'.)

The result of the risk analysis is a list of specific
components from the presented LAN security architecture
that are determined as significant (based on the level of risk
and the cost to reduce that risk) for a given LAN. These
components are called the 'priorities for LAN security' and

are those components that need to be addressed in order to
obtain an acceptable level of assurance for the security of
the LAN. Specifically the priorities for LAN security
consist of an ordered list of specific architecture
components that delineate both a threat with an
unacceptable risk and mechamsm(s) with a justifiable
implementation cost. The ordering of the list is determined
by a ratio of the risk of the threat and the cost to reduce the
threat. Those components where the greatest risk is
reduced by the least cost are ranked higher in the list.

UNAUTHORIZED LAN ACCESS
• Lack of/weak identification and authentication
(I&A) mechanism
• Poorly managed open systems
• Poor password management
• Trojan horse/back door programs
• Unprotected modem use
• Lack of I&A scheme on PCs
• Poor physical control of LAN devices

2 THREATS, VULNERABILITIES,
SECURITY SERVICES & MECHANISMS

This section is composed of two parts. The first part
discusses threats and related vulnerabilities. The second
part of this section discusses LAN security services and the
possible mechanisms thai can be implemented to provide
these services. This section refers the reader to Tables 1
and 2. and Figure 1. Table 1 - Threats and Related
Vulnerabilities provides a listing of specific vulnerabilities
that could be exploited by the threats discussed here. Table
2 - Security Services & Related Mechanisms presents
possible security mechanisms that could be incorporated
into the security services that are discussed. Figure 1 -
Relating Threats and Security Services provides a matrix to
show the relationships between the threats and security
services.

2.1 Threats and Vulnerabilities

The following paragraphs discuss the threats and
vulnerabilities that are incorporated into the IAN security
architecture. The threats that will be discussed are:
• Unauthorized LAN access
• Unauthorized access to LAN resources
• Compromise of data
• Unauthorized Modification to data
• Compromise of LAN traffic
• Modification to LAN traffic
• Spoofing of LAN traffic
• Disruption of LAN functionalities

2.1.1 Unauthorized LAN Access

LANs provide file sharing, printer sharing, storage sharing,
etc. Because resources are shared and not utilized solely by
one individual, there is a need for control of the resources
and accountability for use of the resources. Unauthorized
LAN access occurs when someone, who is not authorized to
use the LAN or to have access to the files and resources
available on the LAN, gains access to the LAN (usually by
acting as a legitimate user of the LAN). Two common
methods used to gain unauthorized access are general
password guessing, and password capturing. General
password guessing is not a new means of unauthorized
access. However, with LANs having large repositories of
data, software, etc., (compared to the amount of information
stored on a single-user system) the consequences of this
threat could be extreme. Password capturing is a process

342

UNAUTHORIZED ACCESS TO LAN
RESOURCES
• Use of lenient system default permissions
• Improper use of LAN manager privileges
• Lack of/poorly managed access control
• Lack of access control for data on PCs

COMPROMISE OF DATA & SOFTWARE
• Lack of encryption for sensitive data
• Monitors &. printout stations placed in high
traffic areas
• Backup copies of information and data not
secured

UNAUTHORIZED MODIFICATION TO DATA
& SOFTWARE
• Lenient write/modify access rights
• Undetected changes to software
• Lack of cryptographic checksum on sensitive
data
• Privilege mechanism allowing excessive write
permission

COMPROMISE OF LAN TRAFFIC
• Inadequate physical protection of IAN devices
• Use of broadcast protocols
• Transmitting plaintext data

UNAUTHORIZED MODIFICATION TO LAN
TRAFFIC
• Lack of cryptographic checksum use

SPOOFING OF LAN TRAFFIC
• Transmitting plaintext
• Lack of date/time stamp
• Lack of message authentication code or digital
signature
• Lack of real-time verification mechanism

DISRUPTION OF LAN FUNCTIONALITIES
• Inability to detect unusual traffic patterns
• Inability to reroute traffic, handle h/w, s/w
failures
» Allowing for single point of failure

Table I - Threats and Related Vulnerabilities

in which a legitimate user may unknowingly reveal his/her
login id and password. This can be done by using the login

program as a trojan horse thai can reveal a user's login id
and password to the potential intruder. Capturing an
unencrypted login id and password as it is transmitted
across the LAN is another method used to gain access.

2.1.2 Unauthorized Access to LAN Resources

One of the benefits of a LAN is that many resources are
readily available to many users, rather than each user
having limited dedicated resources. However, not all
resources need to be made available to each user. To
prevent compromising the security of the resource, (i.e.,
corrupting the resource, or lessening the availability of the
resource) only those who require use of the resource should
be permitted to utilize that resource. Unauthorized access
occurs when a user, legitimate or unauthorized, accesses a
resource that he!she is not permitted to use. Unauthorized
access may occur simply because the access rights assigned
to the resource are not assigned properly. However,
unauthorized access may also occur because the access
control mechanism, or the privilege mechanism is not
granular enough. In these cases, the only way to grant the
needed access rights or privileges is to grant more access
than is needed, or more privileges than are needed.

2.1 J Compromise of LAN Data

As LANs are utilized throughout an agency or department,
some of the data stored, processed or transmitted throughout
the LAN may require some level of confidentiality. The
compromise of LAN data occurs when an individual, who
should not be privy to the data, breaks the confidentiality
of the data by accessing it and comprehending it. This can
occur by someone gaining access to information that is not
encrypted, or by viewing monitors or printouts of the
information.

2.1.4 Unauthorized Modification of Data and Software

Because LAN users share data and applications, changes to
these resources must be controlled. Unauthorized
modification of data or software occurs when unauthorized
changes (additions, deletions or modifications) are made to
a file or program.

When undetected modifications to data are present for long
periods of time, the modified data may be spread
throughout the network, possibly corrupting databases,
spreadsheet calculations, and other various application data.
This can damage the integrity of most application
information.

When undetected software changes are made, all system
software can become suspect, warranting a thorough review
(and perhaps reins tall ation) of all related software and
applications. These unauthorized changes can be made in
simple command programs (for example in PC batch files),
in utility programs used on multi-user systems, in major
application programs, or any other type of software. They
can be made by unauthorized outsiders, as well as those
who are authorized to make software changes (although the
changes ihev make are not authorized). These changes can

343

divert information (or copies of the information) to other
destinations, corrupt the data as it is processed, or impact
the availability of system or network services.

2.1.5 Compromise or LAN Traffic

The compromise of LAN traffic occurs when someone who
is unauthorized reads, or otherwise obtains, information as
it travels across the LAN medium. LAN traffic can be
compromised by physically tapping the network cable (or
listening to traffic that is transmitted through the air) or
capturing broadcast traffic based on an address. Many
users realize the importance of confidential information
when it is stored on their workstations or servers; however,
it is also important to maintain that confidentiality as the
information travels through the LAN. Information that can
be compromised in this way includes system and user
names, passwords, electronic mail messages, application
data, etc. For example even though passwords may be in
an encrypted form when stored on a system, they can be
captured in plaintext as they are sent from a workstation or
PC to a file server. Electronic mail message files, which
usually have very strict access rights when stored on a
system, are often sent in plaintext, making them an easy
target for capturing.

2.1.6 Modification to LAN traffic

Data that is transmitted over a LAN should not be altered
in an unauthorized manner as a result of that transmission,
either by the LAN itself, or by an intruder. LAN users
should be able to have a reasonable expectation that the
message sent, is received unmodified. A modification
occurs when a change is made to any part of the message
including the contents and addressing information.

2.1.7 Spoofing of LAN Traffic

Messages transmitted over the LAN need to contain
addressing information that reports the sending address of
the message and the receiving address of the message
(along with other pieces of information). Spoofing of LAN
traffic involves (1) the ability to receive a message by
masquerading as the legitimate receiving destination, or (2)
masquerading as the sending machine and sending a
message to a destination. To masquerade as a receiving
machine, the LAN must be fooled into believing that the
destination address is the legitimate address of the machine.
(Receiving LAN traffic can also be done just by listening
to messages as they are broadcast to all nodes.)
Masquerading as the sending machine to deceive a receiver
into believing the message was legitimately sent can be
done by spoofing the address, or by means of a playback.
A playback involves capturing a session between a sender
and receiver, and then retransmitting that message (either
with the header only, and new message contents, or the
whole message).

2.1.8 Disruption of LAN Functionalities

A LAN is a tool, used by an organization, to share
information and transmit it from one location to another.

This need is satisfied by LAN functionalities such as those
described in Section 1.2, 'LAN Definition'. A disruption of
functionality occurs when the LAN cannot provide the
needed functionality in an acceptable, timely manner. A
disruption can interrupt one type of functionality or many.

2.2 Security Services and Mechanisms

A security service is the collection of mechanisms,
procedures, etc. that are implemented to help reduce the
risk of associated threats. For example, the identification
and authentication service protects the network from the
unauthorized user threat Some services help provide
protection from threats, while other services provide for
detection of the threat occurrence. An example of this
would be a logging or monitoring service. The following
services will be discussed in this section:

• Identification and authentication
• Access control
• Data confidentiality
• Data integrity
• LAN message confidentiality
• LAN message integrity
• Non-repudiation
• Logging and Monitoring

When determining the priorities for LAN security, the
services should be viewed as providing a layered approach.
While most services can stand alone and provide protection
from a specific threat, using as many as possible in
conjunction strengthens them all.

2.2.1 Identification and Authentication

Users who access workstations, servers, etc. on a LAN may
need to be identified and authenticated to each of those
systems. Identification requires the user to be known by
the system in some manner. This is usually based on an
assigned userid. However the system cannot trust the
validity that the user is in fact, who he/she claims to be,
without being authenticated. The authentication is done by
having the user supply something that only the user has,
such as a token, something the user knows, such as a
password, or something that makes the user unique, such as
a fingerprint. The more of these that the user has to supply,
the less the chances are that someone can masquerade as a
legitimate user.

On most LANs, the identification and authentication
mechanism is a userid/password scheme. However more
LANS are implementing a mechanism where the user
supplies a token (usually a smartcard) and a password.
This means that the user must possess something (the
token) and know something (the password) to gain access.

2.2.2 Access Control

This service protects against the unauthorized use of LAN
resources, and can be provided by the use of access control
mechanisms and privilege mechanisms. Most file servers
and multi-user workstations provide this service to some

344

IDENTIFICATION & AUTHENTICATION
• Identification and authentication (I&A)
mechanism using passwords, smart cards/tokens,
biometrics, some combination
• I&A mechanism used for all LAN devices
• Keyboard/workstation locking
• Password generator
• Termination of connection upon multiple login
failures
• User restrictions to needed devices only
• Realtime user verification

ACCESS CONTROL
• Mechanism using permission bits, access control
lists, user profiles, etc.
• Granular privilege mechanism
• Encryption for sensitive files
• Program execution based on access control and
privilege

DATA CONFIDENTIALITY
• Encryption
• Use of partitions, screens, etc. to block screen
view
• Protection for backup copies of data and
software, printouts, etc.
• Appropriate access control settings

DATA INTEGRITY
• Message authentication codes on software and
data
• Appropriate access control settings
• Granular privilege mechanism
• Virus detection software
• Workstations with no local storage, no software
input device

LAN MESSAGE CONHDENTIALrrY
• Message encryption
• Point-to-point protocols
• LAN devices to limit/scramble broadcasting
• Physical protection of LAN medium

LAN MESSAGE INTEGRITY
• Use of message authentication codes

NON-REPUDIATION
• Use of public key digital signature

LOGGING AND MONITORING
• Logging of I&A information
• Logging of changes to access control
information
• Logging the use of sensitive files & critical

Table II - Security Services & Related Mechanisms

extent. However, PCs which mount directories from the
file servers usually do not. It is important to realize that no

matter how stringent the access control on a file server is,
once the files are mounted as a logical disk on a PC, that
security is no longer there. For this reason it may be
important to try and incorporate this service on PCs to
whatever extent possible.

Access control can be achieved by using discretionary
access control or mandatory access control. Discretionary
access control is the most common type of access control
used by LANs. The basis of this kind of security is that an
individual user, or program operating on the user's behalf
is allowed to specify explicitly the types of access other
users (or programs executing on their behalf) may have to
information under the user's control. Discretionary security
differs from mandatory security in that it implements the
access control decisions of the user. Mandatory controls
are driven by the results of a comparison between the user's
trust level or clearance and the sensitivity designation of the
information. [4, pg.2]

Most LAN access control mechanisms support access
granularity to the level of acknowledging an owner,
specified groups of users, and the world. Many LAN
operating systems implement user profiles or access control
lists to specify control for individual users. These
mechanisms allow more flexibility in granting different
accesses to different users (than the owner/group/world
scheme), while providing more stringent access to the file.
(It can prevent having to give a user more access than is
necessary, a common problem with the three level
approach.)

Privilege mechanisms enable authorized users to override
the access permissions, or in some manner legally bypass
some controls to perform a function, access a file, etc. An
example of this may be that a user is granted a privilege to
override read restrictions on all files in order to perform the
backup function. The more granular the privileges that can
be granted, the more control there is in not having to grant
unnecessary privilege. For example, the user who has to
perform the backup function does not need to have a write
override privilege, but for privilege mechanisms that are
less granular, this may occur.

2.23 Data Confidentiality

This service helps to protect data on workstations, file
servers, etc. from unauthorized disclosure. This service can
be provided by an encryption mechanism, often in
conjunction with the access control service. In this way, if
the access control mechanism is circumvented, the file may
be accessed but the information is still protected by being
in encrypted form. The use of an encryption mechanism can
be very effective on PCs that do not provide an access
control service.

2.2.4 Data Integrity

This service helps lo protect data on workstations, file
servers, etc. from unauthorized modification. The
unauthorized modification can be intentional or accidental.
This service can be provided by the use of cryptographic

345

checksums, and very granular access control and privilege
mechanisms.

The use of cryptographic checksums provide a modification
detection capability. A Message Authentication Code
(MAC), a type of cryptographic checksum, can protect
against both accidental and intentional, but unauthorized,
data modification. A MAC is initially calculated by
applying a cryptographic algorithm and a secret value,
called the key, to the data. The initial MAC is retained.
The data is later verified by applying the cryptographic
algorithm and the same secret key to the data to produce
another MAC; this MAC is then compared to the initial
MAC. If the two MACs are equal, then the data is
considered authentic. Otherwise, an unauthorized
modification is assumed. Any party trying to modify the
data without knowing the key would not know how to
calculate the appropriate MAC corresponding to the altered
data(5,pp.l-2]. See [5] for more information regarding the
use of MACs.

2.2.5 LAN Message Confidentiality

This service protects the information from compromise as
it travels through the medium. This service is critical to
most networks. For nondisclosable information, there must
be a relatively high level of trust that the information is not
readable to anyone other than the intended recipient This
means that either (1) only the intended user has access lo
the information, or (2) the information is unreadable to
anyone else who gains access to the information.

It is very difficult to control access to network traffic as it
traveling across the medium (unless all the wires are
physically encased and protected, and the network is not a
broadcast type of network). For most networks this is a
realized and accepted problem. Therefore the mechanism
of choice for this service involves some type of encryption,
to make it unreadable to those who may capture it.

2.2.6 LAN Message Integrity

This service helps to ensure that a message is not altered,
deleted or added to in any manner during transmission.
Most of the techniques available today cannot prevent the
modification of a message, but they can detect the
modification of a message (unless the message is deleted
altogether). Sending data across a LAN in encrypted form
will not prevent the message from being altered; however,
when the message is decrypted, in most cases it should be
obvious that it was tampered with or that an attempted
addition was made. A stronger approach than using simple
encryption is to calculate a message authentication code
(MAC) for the message. The MAC is calculated based on
the contents of the message. After transmission another
MAC is calculated on the contents of the received message.
If the MAC associated with the message that was sent, is
not the same as the MAC associated with the message that
was received, then there is proof that the message received
docs not exactly match the message sent.

2.2.7 Non-repudiation

Non-repudiation ensures that the parties in a communication
cannot deny having participated in all or part of the
communication. When a major function of the LAN is
electronic mail, this service becomes very important. This
takes two forms (1) non-repudiation with proof of origin
and (2) non-repudiation with proof of delivery. Non-
repudiation with proof of origin gives the receiver
confidence that the message indeed came from the named
sender. Non-repudiation with proof of delivery gives the
sender confidence that the message was delivered to the
named receiver.

2.2.8 Logging and Monitoring

This service performs two functions. The first is the
detection of the occurrence of a threat. (However, the
detection does not occur in real time unless some type of
real-time monitoring capability is utilized.) Depending on
the extensiveness of the logging, the detected event should
be traceable throughout the system. For example, when an
intruder breaks into the system, the log should indicate who
was logged on to the system at the time, all sensitive files
that had failed accesses, all programs that had attempted
executions, etc. It should also indicate sensitive files and
programs that were successfully accessed in this time
period. It may be important that all areas of the network
(all workstations, fUeservers, etc.) have some type of
logging service.

The second function of this service is to provide system and
network managers with statistics that indicate that systems
and the network as a whole are functioning properly. This
can be done by an audit mechanism that uses the log file as
input and processes the file into meaningful information
regarding system usage and security. A monitoring
capability can also be used to detect LAN availability
problems as they develop.

3 DETERMINING PRIORITIES FOR LAN
SECURITY

A systematic approach should be utilized to determine
appropriate LAN security measures. This section will
describe a risk analysis method that can be used to
determine appropriate security measures for existing LANS.
This approach can be exercised for LANs that are in the
development process as well. This approach uses the LAN
security architecture described in Section 2, and describes
a risk analysis process that can be used to determine the
priorities for LAN security for a given LAN. The five step
process begins with a data collection phase that stresses the
need for detailing the physical and functional aspects of the
LAN, as well as the importance of identifying and valuing
all assets of the LAN. The next steps of the process
address what harm could come to the LAN, the
consequences of that harm to the assets, and what possible
security measures could be taken to protect the LAN. The
last step of the process involves implementing these

346

? « I
THREATS

IAN

jj jinH
Unauthorized
LAN

Compronnjo of D«t» Jt S/W

ModUl^to of tktm k. S/W

Oooyhi of IAN Ttifltc

Modulation of LAN Tmfflc

Spoofing of LAN TWBc

Dtauption of LAN Service.

Figure 1 - Relating Threats and Security Services

measures, and testing them to ensure that the security is
appropriate. The five steps for this process are:

/. Define the LAN configuration,
2. Determine the LAN risks,
3. Select security services and security mechanisms,
4. Develop 'priorities for LAN security',
5. Implement and test security mechanisms.

LAN security should not be addressed by one individual.
It is important that the concerns and needs of the
organization as a whole are addressed. This perspective can
only be obtained by including parties from relevant areas of
the organization, which minimally may include LAN
management, organizational management, and security
personnel.

STEP 1 DEFINE LAN CONFIGURATION

The first step in determining priorities for LAN security is
to define all aspects of the LAN, and to determine all assets
of the LAN. The goal of this step is twofold, the first is to
have a detailed LAN configuration that indicates hardware
incorporated, major software applications used, significant
information processed on the LAN, as well as how that
information flows through the IAN. The second goal of
this step is to identify and value the assets of the LAN. An
asset is any part of the LAN considered to have value.
Assets may include any piece of hardware, software,
applications, data, etc. Assets then become those areas of
the LAN that need to be protected. When developing the
LAN configuration, the following aspects should be
considered:

1. Hardware configuration - includes servers, workstations,
PCs, peripheral devices, remote connections, cabling maps,
bridges or gateway connections, etc.
2. Software configuration - includes server operating

systems, workstation and PC operating systems, the LAN
operating system, major application software, software
tools, LAN management tools, and software under
development This should also include the location of the
software on the LAN, and from where it is commonly
accessed.
3. Data - includes a meaningful typing of the data processed
and communicated through the LAN, as well as the types
of users who generally access the data. Indications of
where the data is stored and processed, along with how the
data flows through the LAN is important. Attention to the
sensitivity of the data should also be considered.

In determining and valuing LAN assets, this process uses a
qualitative valuation approach. The value of the asset is
represented in the process in terms of the potential loss if
a threat is realized. The loss value for the asset is
calculated as a value between 1 and 3, meaning a 1 will
indicate a low loss, a 2 will indicate a moderate loss, and
a 3 will indicate a high loss.

After the LAN configuration is completed, and the assets
are determined and valued, there should be a reasonably
correct view of what the LAN consists of, and what areas
of the LAN need to be protected. This leads to Step 2 -
Determine Risk, which will indicate what can harm the
IAN and how vulnerable the LAN is to realizing losses.

STEP 2 DETERMINE RISK

The question - What are the LAN assets that need
protection? has been answered in the previous step. To
answer the question - From what threats do the assets need
protection?, an understanding of the threats and
vulnerabilities needs to be developed. This understanding
can be accomplished by performing a risk analysis. A risk
analysis measures how vulnerable the LAN is to defined
threats. The goal of this step is to determine the level of
current security for the LAN, by determining the risk of the
LAN to threats and vulnerabilities.

To begin the process of determining risk, consider the
threats to the LAN. and the possible vulnerabilities of the
LAN that could be exploited by those threats. Use the
threat and vulnerability lists provided in the LAN security
architecture to examine the LAN, however do not preclude
other threats and vulnerabilities that may be discovered.
Add these new threats and vulnerabilities to the
threat/vulnerability lists. Any aspect of the LAN that was
defined in step 1 to have value should be examined to
determine what threats could potentially harm it. Particular
attention should be made to detail the ways that these
threats could occur. For example, unauthorized access may
be from a login session playback, password cracking, the
attachment of unauthorized equipment to the LAN, etc.
These specifics provide more information in determining
IAN vulnerabilities, which will provide more information
in making determinations in later steps.

The risk analysis may uncover some vulnerabilities that can
be corrected by improving LAN management and
operational controls immediately. These improved controls

347

will usually reduce the risk of the threat by some degree,
until such time that more thorough improvements are
planned and implemented.

Attention should be paid to existing LAN security controls
to determine if they are not currently providing adequate
protection, and thus become vulnerabilities. These controls
may be technical, procedural, etc. Far example, a LAN
operating system may provide access control to the
directory leveL rather than the file level. For some users,
the threat of compromise of information may be too great
not to have file level protection. In this example, the
access control provided could be considered a vulnerability.

As specific threats and related vulnerabilities are identified,
a risk value needs to be associated with the threat. The risk
associated with a threat is generally defined to be a function
of the probability that the threat can occur, and the expected
loss incurred given that the threat occurred. The risk can
be calculated as follows:

risk • probability of threat occurring x loci incurred

The value estimated for loss is determined to be a value
between 1 and 3. (This should have accomplished in Step
1 in conjunction with asset identification.) The probability
of the threat occurring can also be normalized between 1
and 3, meaning a 1 will indicate a low probability, a 2 will
indicate a moderate probability and a 3 will indicate a high
probability. Therefore risk will be calculated as a number
between 1 and 9 (actually the possibilities are 1,23.4,6 and
9), meaning a risk of 1 or 2 is considered a low risk, a risk
of 3 or 4 would be a moderate risk, and a risk of 6 or 9
would be considered a high risk. For example, it could be
considered that the loss of data may be valued at 3. The
probability that a threat may occur to cause this loss of data
may be estimated at 2. Therefore the calculation may be:

risk = 3x2 = 6 = HIGH

The levels of risk are now normalized (i.e. low, medium
and high) and can be used to compare risks associated with
each threat. Using an approach such as this is useful for
many who are responsible for developing LAN security,
however it does not preclude calculating risk by a different
method.

To ensure that all identified risks and vulnerabilities are
addressed, construct a list by prioritizing the threats based
on the risk associated with each threat. Threats with the
highest risk should be placed at the top, while threats with
a lower risk value at the bottom. The vulnerabilities related
to the threats should appear with the threats.

With a list of potential threats, vulnerabilities and related
risks, an assessment of the current security situation for the
IAN can be determined. Areas where there is adequate
protection do not surface as contributing to the risk of the
LAN, whereas those areas that have weaker protection do
surface as needing attention. These are the areas that are
considered in Step 3 - Security Service and Mechanism
Selection, which analyzes potential security services and
mechanisms in order to provide adequate protection.

STEP 3 SELECT SECURITY SERVICES &
MECHANISMS

This step examines security services and mechanisms to
determine those that would be appropriate to provide
security to reduce the defined risks. Security services are
the sum of mechanisms, procedures, etc. that are
implemented on the LAN to provide protection. The goal
of this step is to determine the possible security services
and mechanisms needed, based on the risk information
provided from the previous step. When deciding on
services and mechanisms, the issue of funding the services
and mechanisms should not be used to preclude including
a specific service or mechanism. All feasible services and
mechanisms should be considered and included in the
process in this step (service and mechanism choices based
on available funding are considered in Step 4 - Develop
Priorities for LAN Security). This step is broken into four
tasks.

TASK 1 - Consider the security services provided in the
LAN security architecture. To determine if a specific
security service is needed, use the matrix provided with the
LAN security architecture to help in the consideration.
Relate the threats defined in the previous step to the
services that are shown to help reduce the risk of the threat.
In most cases the need for a specific service should be
readily apparent. If there is no risk to a certain threat (if
existing mechanisms are adequate) then there is no need to
apply additional mechanisms to the service that already
exists.

TASK 2 - After the needed security services are
determined, consider the list of security mechanisms for
each service. For each security service selected, determine
the candidate mechanisms that would best provide that
service. The issue of available funding should not be
factored in this decision. Using the threat/vulnerability
relationships developed in the previous step, chose those
mechanisms that could potentially reduce or eliminate the
vulnerability, and thus the risk of the threat. In many cases,
a threat/vulnerability relationship will have more than one
candidate mechanism. Choosing the candidate mechanisms
is a subjective process that will vary from one LAN
implementation to another. Not every mechanism presented
in the LAN security architecture is feasible for use in every
LAN. In order for this process to be beneficial, some
filtering of the mechanisms presented needs to be made
during this step. Mechanisms should not be included in the
list of candidate mechanisms if they can be discounted for
a special reason (incompatibilities with existing
configurations or mechanisms, policy issues, etc).

TASK 3 - The decision to use a certain mechanism will
largely depend on the cost of the mechanism. Although the
decision to implement a certain mechanism is made in the
next step, the estimation of the cost will be made in this
step. This cost is the amount needed to purchase or
develop, and implement each of the mechanisms. The cost
can be normalized in the same manner as was the value for
potential loss incurred, that is a 1 will indicate a mechanism
with a low cost, a 2 will indicate a mechanism with a

348

moderate cost, and a 3 will indicate a mechanism with a
high cost.

TASK 4 - In order to relate the threat/vulnerability
relationships with the candidate security services and
mechanisms, update the list of threats, vulnerabilities and
associated risk, to show the relationship of these to the
candidate security services, security mechanisms, and
estimated costs. With the completion of this step, (and thus
the risk analysis) the following should now be defined:

1. The threat/vulnerability relationships accompanied by the
associated risk of the threat.
2. The proposed security services that could be used to
adequately protect the LAN from threats.
3. The feasible security mechanisms (with cost estimates)
that could be used to comprise the security services.

These constitute the input for the subsequent step used to
determine those specific security mechanisms that should be
implemented. The analysis that is performed in the next
step can only be as solid as the information provided to it

STEP 4 DEVELOP 'PRIORITIES FOR LAN SECURITY'

In this step a determination is made of which candidate
security services and mechanisms will provide acceptable
protection, given cost and other concerns. The goal of this
step is to produce a prioritized list of security services and
mechanisms that should be implemented in order to reduce
perceived LAN risks and to protect the IAN adequately
(called the priorities for LAN security).

The process used in this step to determine the proper
services and mechanisms involves a comparison of the risk
associated with a threat, and the cost estimated to
implement a mechanism that will reduce the threat. This
comparison is made for each component that was created in
the preceding step. In some cases this process may not be
straightforward. Other factors such as special concerns,
requirements, policies, etc. may mandate that a specific
mechanism be implemented, regardless of the cost. In
some cases there may be mechanisms that reduce or
eliminate more than one vulnerability (and thus reduce the
risk of one or more threats). In these cases, it may be
appropriate to group the LAN security architecture
components together and recognize that a particular
mechanism has the potential to reduce or eliminate more
than one vulnerability (and the risk of more than one
threat).

To calculate the risk/cost relationships use the risk value
and the cost value associated with each threat/mechanism
relationship and create a ratio of the risk to the cost (i.e.
risk/cost). A ratio that is less than 1 will indicate that the
cost of the mechanism is higher than the risk associated
with the threat. This is generally not an acceptable
situation (and may be hard to justify) but should not be
automatically dismissed as a possibility. Consider that the
risk value is a function of both the loss value and the
probability value. One or both of these values may
represent something so critical about the asset that the risk

value does not properly reflect the loss. Every LAN
implementation has different security needs, and in certain
cases, a threat/mechanism relationship with a value less
than 1 may be warranted. Also, since these are estimates,
something less than a 1 but close to a 1 may be reflecting
the difficulty of estimating. An additional column needs to
be added to the list showing the risk/cost relationship.

To determine which components constitute priorities for
LAN security, the components should be ranked based on
their risk/cost values. Rank those with the highest risk/cost
value first, since these reduce the most risk for the least
cost. This process of ranking provides only a guideline for
choosing appropriate mechanisms. Other factors may
provide justification for ranking a component higher.

The goal of this step is to determine the appropriate
security mechanisms to implement on the LAN by ranking
the components based on the risk/cost information provided,
and other considerations, if any. The priorities for LAN
security suggest necessary mechanisms that need to be
implemented to provide adequate LAN security. It is
possible that some components (usually those with a lower
ranking) may not be considered as a priority. This could be
due to unjustifiable risk/cost ratios, certain organization
policies, or other factors that make them infeasible.
Components considered infeasible. for whatever reason, can
be removed from the list. The remaining components of
the prioritized list become the priorities for LAN security.
The mechanisms that make up these components should
then be implemented as funding becomes available.

With the completion of this step, the goal of the overall
process has been met - that is, to determine the appropriate
security measures needed to protect the LAN. These
measures are referred to as the priorities for LAN security.
The final step of this process is utilized to ensure that the
mechanisms are implemented correctly, and that they
provide the security they are supposed to provide.

STEP 5 IMPLEMENT AND TEST SECURITY
MECHANISMS —"~

Just as the mechanisms that constitute the priorities for
LAN security were chosen using a systematic approach, so
should the implementation of those mechanisms proceed in
the same manner. The goal of this phase is to ensure that
the security mechanisms are implemented correctly, are
compatible with other LAN functionalities and security
mechanisms, and that the security mechanisms meet the
requirements of providing adequate security.

This step begins by developing a plan to implement the
mechanisms. This plan should consider factors such as the
timeliness required to reduce risk, available funding, users'
learning curve, etc. A testing schedule for each mechanism
should be incorporated into ihis plan. This schedule should
show how each mechanism interacts with other mechanisms
(these may be security mechanisms or mechanisms of some
other functionality). The expected results (or the
assumption of no conflict) of the interaction should be
detailed. It should be recognized that not only is it

349

important that the mechanism perform functionally as
expected, and provide the expected protections, but that the
mechanism does not contribute to the risk of the LAN
through a conflict with some other mechanism or
functionality.

Each mechanism should be first tested independently of
other services or mechanisms to ensure that it performs as
correctly and provides the expected protection. In some
cases, this may not be relevant to do, the mechanism may
by design only interwork with other mechanisms. After
testing the mechanism independently, the mechanism should
then be tested in conjunction with other services and
mechanisms to ensure that it does not disrupt the normal
functioning of those existing services and mechanisms. The
implementation plan should account for all tests, and should
reflect any problems or special conditions as a result of the
testing.

After all mechanisms are implemented, tested and are found
acceptable, the list of priorities for LAN security should be
reexamined. The risk associated with the
threat/vulnerability relationships should now be reduced to
an acceptable level or eliminated. If this is not the case,
then the decisions made in the previous steps should be
reconsidered to determine what the proper protections
should be.

References

[1] Chang, Shu-jen. Priorities for An Agency Local Area
Network Security, October, 1992.

[2] Proceedings: National Computer Security Conference
1986, pp.62-70.

[3] Barkley. John F.. and K. Olsen, Introduction to
Heterogenous Computing Environments, NIST Special
Publication 500-176. November, 1989.

[4] A Guide to Understanding Discretionary Access
Control in Trusted Systems. NCSC-TG-003, Version 1.
September 30, 1987

[5] Smid, Miles, E. Barker, D. Balenson. and M. Haykin,
Message Authentication Code (MAC) Validation System:
Requirements and Procedures, NIST Special Publication
500-156, May, 1988.

MANDATORY POLICY ISSUES OF
HIGH ASSURANCE COMPOSITE SYSTEMS

Jonathan Fellows
Grumman Data Systems

4015 Hancock Street
San Diego CA 92110

ABSTRACT

It is a commonly heard opinion that high assur-
ance secure distributed systems - those that
have a TCSEC level of B3 or Al - are beyond
the current state of the art. This paper argues
that this need not be the case - that a combina-
tion of existing implementation and assurance
techniques can meet high certification require-
ments for distributed systems. This paper's
viewpoint is that the current lack of such sys-
tems is not the result of an inadequate technol-
ogy base, but is due more to market forces and
lack of interface standardization.

Distributed enforcement of a mandatory secu-
rity policy in a multiple client/server architec-
ture is analyzed, with an emphasis on the
parallels with the mechanisms and assurances
of a classical stand-alone Trusted Computing
Bases (TCBs). Policies that support a state ma-
chine mandatory policy model are reviewed,
and the impact of the distribution of these poli-
cies on implementation mechanisms and assur-
ance approaches is explored.

1. INTRODUCTION

A multilevel secure distributed system must
satisfy a mandatory system level security poli-
cy that confines information flows on the basis
of security labels. It is rarely possible to devel-
op such a system completely from scratch - a
more realistic scenario is that individual com-
ponents have been independently developed to
the same standard of assurance. We assume
that no single component controls policy defi-

nition or enforcement for the system as a
whole.

The policies addressed in this paper are limited
to the label-based Mandatory Access Control
Policy described in the U.S. Department of
Defense Trusted Computer Security Evalua-
tion Criteria (TCSEC) [DOD85], as well as a
number of supporting policies needed to sup-
port the mandatory policy. This limitation in
scope is not meant to ignore the importance of
other policies and security services to compos-
ite systems, such as discretionary access con-
trol, data integrity, assured service, and
authentication. Mandatory policy enforcement
was chosen as the topic for this paper in the be-
lief that it is a simpler matter than those just
mentioned, and that demonstration of compos-
ite trusted systems should proceed first with
simple policies.

The most common paradigms for connecting
distributed components are message passing,
where an output of one component becomes an
input of another, and remote operations, where
a subject in one component invokes an opera-
tion on an object managed by a remote compo-
nent. Both conventions are capable of serving
as the basis for a distributed model of secure
computation. We chose to examine distributed
system composition from the remote opera-
tions point of view because the resulting archi-
tecture remains similar to well known worked
examples of stand-alone reference model ar-
chitectures. Our hope is that the precedents
that have been established for stand-alone sys-
tems will apply to remote server systems as
well.

350

The remote operation paradigm is at the heart
of the increasingly popular Client/Server ar-
chitecture, where a set of resources are man-
aged by a server which may have a dedicated
hardware platform. The resources are accessed
remotely using a Remote Procedure Call
(RPC) protocol. Secure versions of the RPC
mechanism are the heart of the approach advo-
cated in this paper. We believe that this mecha-
nism will lead to composite systems that can
be assured at the Al level with only moderate-
ly more effort than equivalent stand-alone sys-
tems.

There is considerable ongoing work in the area
of secured RPC protocols. The Kerberos sys-
tem offers an identification and authentication
service for client/server architectures, but does
not address mandatory policy issues. The
Trusted Systems Interoperability Group is in
the process of defining a trusted Network File
System commercial standard, but has not yet
published results. Various OSI groups are in-
vestigating secure remote operations, but none
have advanced beyond draft status.

2. SUPPORTING POLICIES

Access control models such as Bell and La
Padula [BLP76] provide a useful high level
model of mandatory policy enforcement, but
they do not suffice in themselves to character-
ize the objective of information flow confine-
ment . A number of supporting policies are
needed to approximate this confinement objec-
tive. The assurance of these supporting poli-
cies has often not been supported by formal
analysis, even at the Al level. This section re-
views these supporting policies, and explores
the issues of implementing them in a distribut-
ed system.

2.1 Entelechv
This obscure term, which is derived from a
Greek word denoting "proper usage", was in-
troduced by Kelem in [Fell87] to describe
checks that are made to assure that individual
"read" or "write" operations are properly con-
strained. The Bell and La Padula model is
based on checks made at the time access is
granted to an object, with the assumption that
individual read and write operations are medi-
ated by a hardware-based mechanism , which
is not explicitly modeled.

There are two reasons to question the generali-
ty of this convention: (1) some interpretations
of the access control model apply to objects
whose read and write operations are imple-
mented entirely by software mechanisms, such
as file or database servers, and (2) some ob-
jects are accessed by a stateless service model,
where each read and write is an independent
event that does not depend on any prior service
events. In the first case, explicit modeling of
software-based checks that reads and writes
are confined to a previously mediated context
seems a necessary component of assurance. In
the second case, forcing a single stateless ser-
vice event to be modeled as an atomic se-
quence of three model events (e.g. request,
read, release) is unnecessarily awkward, and
calls into question the fundamental status of
current access in the model.

Entelechy policies either constrain "reads" and
"writes" within a stateful context that has pre-
viously been mediated for subject/object label
consistency, or they require mediation of each
stateless "read" and "write" individually. Ex-
amples of stateful services include memory
segments, file systems, database systems, and
connection oriented messaging. Examples of
stateless services include some distributed file

1. This was not necessarily the intent of the original au-
thors.

2. The original models were similar to the Multics oper-
ating system, where segmentation hardware performed
these checks for memory segment objects.

351

systems and connectionless messaging. As can
be seen from the duplications in these lists of
examples, the choice of stateful or stateless
service is not always inherent in the choice of
object to be managed. Sometimes a design de-
cision for a given access control system may
depend more on the statefulness of the en-
forcement mechanism than on the service of-
fered.

2.2 Model Data Stability
The simple security and *- properties constrain
only current access. Any realistic model of se-
cure systems must also provide for controlled
changes in value of the remaining elements of
the model. This simply means that, most of the
time, we expect the population of subjects, ob-
jects, and their labels to be stable from one
state of the model to the next. When these ele-
ments of the model do change, as when sub-
jects or objects are created or deleted, we
expect that role-based controls will be invoked
which limit these actions to appropriate sub-
jects. This is the heart of a number of criti-
cisms of the Bell and La Padula model
[McLe87].

Label stability is particularly sensitive. We of-
ten expect the label lattice to be stable over the
lifetime of the system, and for label function
values to be stable for the lifetime of the la-
beled subject or object (for objects, this is the
"tranquility" principle). These expectations
may be difficult to fulfill in federated systems,
as is discussed later in this paper.

2.3 Model Data Integrity
Because the access control logic for a stand-
alone system is maintained in a dedicated do-
main and is protected from tampering, the sys-
tem can establish a user's identity at logon and
reliably associate the user's logon session level
with all subjects created to act on behalf of that
user. All of the information needed to mediate
access is available in one place.

When mediating access requests that involve
more than one component system, it may be
necessary to communicate label values from
where they are maintained to where the access
check is made. The communication channel
that carries this information must preserve the
label value and its associations unchanged.
This requirement is similar to the trusted path
requirement for authentication of users, except
that here we are dealing with mutual authenti-
cation of trusted components.

2.4 Covert Channels in Operations
Covert channels can sometimes be viewed as
unmodeled information flows. A state machine
model of access control relies on characteriza-
tion of operations on objects as read and/or
write operations, depending on the direction of
flow of information between subject and ob-
ject. In order to attain a desired level of ab-
straction, this characterization often ignores
obscure reverse-direction information flows in
operations that are modeled as read-only or
write-only. This need not be harmful, but rath-
er can be viewed as a way to control the
amount of complexity that is dealt with within
the model, and as a way to factor assurance ef-
forts. Well known sources of covert channels
include object existence in a shared name
space, resource locks on shared objects, mes-
sage length encoding, and flow control of mes-
sage based interfaces.

The bottom line is that we choose to allow co-
vert reverse information flows in operations,
while modeling them as one-way. As long as
the mechanisms that implement read and write
operations are under the complete control of
the trusted access control mechanism, covert
information flows can often be identified and
limited in bandwidth.

352

3.C0MP0NENT LEVEL MODELS

The mandatory policy model adopted for this
paper is the state machine of the Bell and La
Padula model. The choice of this model for a
distributed application is controversial within
the security research community, but we be-
lieve that it has three major virtues: (1) it fits
well with the popular client/server model of
system distribution; (2) it has established pre-
cedents as the basis for a TCSEC Al level
evaluation, and (3) its focus on internal state
provides implementation design guidance.

Rather than view a distributed system as a sin-
gle state machine, we will view a distributed
system as a family of state machines that may
be connected to each other by sharing ele-
ments. The following notation will be used to
refer to the elements of the security models for
each component, C[i]:

L[i]: Label lattice of C[i], defines a set of la-
bels and a label comparison operator

S[i]: Subjects managed by C[i], assumed to
be processes executing on a single ma-
chine.

clearance[i]: Subject clearance attribute func-
tion for C[i], S[i]-> L[i]

0[i]: Objects managed by C[i]

label[i]: Object label attribute function for
C[i],0[i]->L[i]

A[i]: Set of access operations (modes)
allowed by C[i]

CA[i] :Current Access matrix for C[i],
S[i] x 0[i] -> Powerset(A[i])

Each system enforces a security policy with
simple security and *- properties that state lim-
itations on the values that the current access
matrix can take. The effect of these properties
are the familiar "no read up" and "no write
down" restrictions.

This notation defines a class of models that
provides a state machine description of the ac-

cess controls necessary to confine operations
on labeled objects so that information cannot
flow from a "higher" labeled object to a "low-
er" labeled object. Demonstrations of this con-
finement property follow an inductive method:
first show that the initial state is secure, then
show that all transitions from a secure state re-
sult in a secure state.

4. COMPOSING SECURE SYSTEMS

Our way of looking at trusted client/server sys-
tems is as a collection of individually secure
state machines which share some of their ele-
ments. In principle, any of the elements in the
state machine model could be shared, but lim-
iting the amount of coupling results in a more
modular architecture. The following sections
demonstrate one such scheme of sharing indi-
vidual model elements.

4.1 Shared Labels

Coupling of the label lattices of component
systems is a prerequisite for system composi-
tion. The simplest case of label coupling is
where all systems to be composed share the
same label lattice, so that L[i] = L[j] for all i
and j. All components implement the same la-
bel comparison operation, so that label order-
ing is the same on all components. This case is
frequently too simplistic to handle the way la-
bels are used in real applications. The follow-
ing situations have had to be accommodated in
real systems:

• Different systems frequently implement pri-
vate label data types. In this case a label
translation must be performed for every la-
beled interaction between systems. The best
way to handle this is with a single system
level label standard, with translations per-
formed on import and export. The label
translation function must be order preserv-
ing.

353

• Different systems can operate over different
accreditation ranges, so that each system
recognizes some sublattice of the overall
system lattice. This may result in a require-
ment for label coercion, or relabeling, at the
time of a trusted import or export.

• Different systems may represent subject
clearances with different data structures.
Real life examples include labeling subjects
with a single label that represents the sub-
jects highest clearance level, a range of la-
bels that defines the sublattice over which a
subject can operate, and a list of individual
labels that a subject is allowed.

• An individual system may extend the sys-
tem label lattice with local values used for
local TCB structuring purposes.

• The propagation of a system-wide change in
labeling to the individual L[i] requires glo-
bal consistency assertions that are difficult
to assure in practice. The need for system
level label changes is real, since a compart-
ment may have a lifetime less than that of
the system.

4.2 Shared Subjects
Sharing subjects means that a local subject of
one component state machine can remotely in-
voke a mediated operation on an object under
the control of another state machine. Each
state machine mediates requests from both lo-
cal subjects, for which it maintains subject
clearances, and remote subjects, for which it
does not. This means, in effect, that each state
machine's subject label function, clearance[i],
is distributed across all of the state machines
within a given system. It is important to re-
member that subjects are not users, but pro-
cesses executing on behalf of users. A single
subject is executing on a single machine, and
no entry in the label function is under the con-
trol of more than one state machine.

A unitary Trusted Computing Base (TCB) has
the advantage that the definition of subjects

and their security relevant attributes is com-
pletely under the control of the TCB. Since the
TCB usually controls the process abstraction
of the system, the operation invocation mecha-
nism at the TCB boundary provides a reliable
means of identifying the subject performing a
mediated operation. Since the internal TCB
storage that contains the subject clearance in-
formation is assumed to be high integrity,
when the TCB retrieves a subject's clearance,
it believes the value it finds.

Mediation of remote operations requires high
integrity equivalents to these properties. Be-
fore mediation of a remote operation can pro-
ceed, the clearance of the remote subject must
be established in a way that cannot be spoofed
or counterfeited. A TCB to TCB communica-
tion channel must be established using a mech-
anism that is as strong as the hardware domain
mechanism of the unitary TCB.

The problem of reliably communicating a re-
mote subject's clearance, which is the key is-
sue in supporting distributed mandatory policy
enforcement, can be solved in a number of
ways, some of which will be discussed in a lat-
er section. This is actually a significantly easi-
er problem than reliably (and unambiguously)
establishing a remote subject's associated user
identity, which is needed to support discretion-
ary policies and audit accountability.

4.3 Private Objects
In order to preserve the desired analogy be-
tween stand-alone and distributed systems, we
adopt the convention that each trusted state
machine in the system manages its own set of
objects, which are disjoint from the objects of
any other machine. This means that all objects
in the composed system remain completely un-
der the control of a single component level
TCB. Considerably more general relation-
ships are possible between objects of compo-
nents to be composed, such as hierarchical
containment or joint management. These more

354

general schemes result in distribution of a state
machine's 0[i], label[i], and CA[i] elements,
making it significantly more difficult to ana-
lyze the system for high assurance TCSEC lev-
els.

When all operations on the objects managed
by a particular machine are mediated by the
TCB of that machine, the reference monitor
protection mechanisms and the policy specifi-
cations of a particular machine are nearly iden-
tical to those of a stand-alone TCB. In
particular, the representation of objects, object
labels, and current access sets are not impacted
by the remote operation distribution mecha-
nism. The representation of these entities usu-
ally takes the majority of the effort in
developing formal specifications and showing
correspondence to an implementation.

4.4 Remote Operations

A remote procedure call (RPC) [Nels87], is an
application level protocol which implements a
remote operation on top of a message-based
communications service. This section discuss-
es some of the issues involved in securing an
RPC service. The beauty of the trusted RPC
approach is that it can implement one-way op-
erations (i.e. read-down or write-up) on top of
two-way communications. By way of contrast,
message passing schemes are usually limited
to two-way same-level peer communications,
leading to a need for trusted subjects in many
applications.

Remote procedure protocol implementations,
such as the one defined in [RFC88], typically
have the following properties:

• Input parameters of the procedure call are
marshalled into one or more request mes-
sages from a client to a server.

• Output parameters of the procedure call are
marshalled into one or more response mes-
sages from a server to the requesting client.

• Multiple concurrent calls are supported, so
that an implementation needs to be able to
associate requests and responses from the
same call, which may share a unique trans-
action identifier.

• Optional authentication information may be
carried in request and response headers.

• The version number of the RPC protocol is
included in request and reply messages.

• No data integrity mechanisms are added to
those of the underlying transport protocol.

To these functional properties, a multilevel
version of RPC must add the facility for reli-
ably communicating the clearance of the re-
questing subject, and for binding this clearance
to a request in a way that cannot be tampered
with.

We assume that each RPC protocol for a medi-
ated operation is part of the trusted computing
base of both the client and the server compo-
nent. The fact that the server is part of the
TCB, and trusted to send and receive messages
of different labels is what allows the imple-
mentation of one-way operations, even if the
transport mechanism enforces its own label-
based policy.

A classical unitary TCB uses hardware mecha-
nisms to guarantee that a mediated operation
results in information flow only between the
subject and object identified in the operation.
A secure RPC mechanism must likewise guar-
antee that the messages it employs are only
visible to the client and server TCBs, and that
results are communicated only to the originat-
ing subject. This will require high assurance of
transaction identifier data integrity and binding
of transaction identifiers to messages.

3. The Boeing Secure LAN [Schn87] is an exception to
this rule, with its support for one-way TCP connections.

355

5. IMPLEMENTATION ISSUES

This section briefly describes some of the im-
plementation options for secure RPC, focusing
primarily on mechanisms that provide the sup-
porting policies introduced in Section 2.

5.1 Entelechv
Entelechy deals with confinement of individu-
al read and write operations to a mediated con-
text. For a stateless service, the client
component must provide the clearance level
associated with the calling subject to the server
component every time an operation is invoked.
For a stateful service interface, the RPC opera-
tion that establishes a service session can pro-
vide the subject clearance to the server
component. Subsequent RPC calls within the
context of this established session must estab-
lish their association with the session, Since
we are dealing in this paper only with manda-
tory policy, we do not address the authentica-
tion of user identity on a per-call or per-session
basis.

Stateless services, which were chosen for the
Network File System [RFC89] have the advan-
tage of not having to reliably maintain state in-
formation in the presence of component
failures. Similar benefits accrue to a secure
stateless service, where each request is mediat-
ed afresh, obviating the need to deal with the
recovery problems of half-stateful associations
(e.g. a client with a secure file handle but no
server context).

5.2 Model Data Stability
Ultimately, even mandatory policies are identi-
ty-based, in that the clearance associated with
a subject when it is created is the clearance of
the user on whose behalf the subject is execut-
ing. Maintaining user clearances independent-
ly on each component machine, while perhaps
meeting the letter of high assurance require-
ments, is awkward and error-prone.A trusted

directory service that provided a high integrity
central point of definition for user clearances
would be a significant improvement. Such a
service is described in [Linn90].

The set of operations offered by a service are
defined by the RPC protocol definition for that
service. If this changes over time, the effect of
different components executing different ver-
sions of the protocol could cause security vio-
lations. This is a model data integrity issue that
leads to a need to treat RPC version numbers
as a high integrity element of the protocol. The
version number should change any time a
change is made to operations or labels.

5.3 Model Data Integrity
The communication security service require-
ments of multilevel secure RPC are:

• Identification with high data integrity of the
subject clearance associated with a call.

• Binding of subject clearance to an RPC re-
quest.

• Correct association of result data with an
original request (also an entelechy issue).

• Delivery of call results only to the request-
ing server (also an entelechy issue).

• Confidentiality of RPC data in transit be-
tween client and server TCBs.

The requirement to securely communicate sub-
ject clearances, transaction identifiers, and
RPC version numbers between client and serv-
er TCBs is not currently supported by TCP/IP
protocols. BLACKER supports appropriate IP
level confidentiality, but does not provide the
needed integrity services. [Fell87] describes
application specific use of embedded encryp-
tion to provide similar integrity services for the
administrative control functions of a secure
network, using message authentication check-
sums. Similar techniques could be used to di-
rectly provide integrity of RPC messages.

356

Appropriate integrity services are available
from both the SP3 and SP4 protocols, which
are SDNS variants of the OS I CLNP and TP4
protocols. A secure RPC could specify data in-
tegrity service for both request and reply mes-
sages. SP 3 is probably the better choice, since
typical connection-based cryptographic mech-
anisms, such as that used for SDNS SP4, cur-
rently require several seconds to establish a
connection - clearly too much overhead to
wrap around each RPC call.

5.4 Covert Channels

Each of the component state machines, as part
of its certification, must have been subject to
covert channel analysis of the trusted service it
provides. Composing different state machines
with a trusted RPC protocol introduces two
new opportunities for covert channels (1) in-
formation flows introduced by the RPC proto-
col itself, and (2) composition of covert
channels from different components.

The RPC protocol itself does not present a
TCB interface directly to untrusted subjects,
which see only the procedural interface de-
fined by a server component. The RPC imple-
mentations are a part of both the client and
server TCBs, which means that untrusted sub-
jects never have the ability to sense protocol
control information such as header fields, mes-
sage lengths, or address information. Of
course, some control information ultimately is
returned to subjects in the form of operation
result status, but this was already the case for
the undistributed form of the server TCB.

The presence of multiple trusted servers in a
system does introduce the possibility of cas-
cading covert channels end to end, so that mul-
tiple TCBs are involved in a covert signalling
path. However, if each single TCB covert
channel meets TCSEC bandwidth guidelines
for its assurance level, then the cascaded chan-
nel will meet the guideline as well.

6. ASSURANCE ISSUES

Our chosen convention for sharing model ele-
ments of component state machines assures
that most model elements remain under the
control of a single TCB. The effect of this con-
vention is that the mandatory security policies,
reference monitor mechanisms, and assurance
evidence of a stand-alone TCB is not signifi-
cantly altered when the TCB becomes a server
in a client/server architecture. The exception is
the subject clearance function, which is dis-
tributed over all of the components of such a
system. Even here, our convention is that
clearance entries are partitioned in the system -
i.e. no entry is maintained by more than one
TCB. So again, previously existing component
controls over individual subject clearance en-
tries should meet high assurance requirements.

Composition through remote operations re-
quires distributed assurance primarily for the
supporting policies mentioned in Section 2. At
the Al level of assurance, there is precedent
for the use of rigorous engineering analysis, as
opposed to formal modeling, of these policies.
In terms of the size and complexity of the TCB
to be assured, the remote procedure call imple-
mentation is considerably less complicated
than a reliable connection oriented protocol
like TCP or TP4. This is due to the decision
taken in [RFC88] not to address reliability is-
sues in the RPC protocol.

Clients and servers of a given system need not
share the same underlying TCB architectures.
This fact can serve to strengthen system level
assurance through the use of servers which ex-
ecute on local TCBs whose architectural trade-
offs have been decided in favor of TCSEC
assurance requirements. Components which
support general purpose clients are driven by
market forces to provide an environment that
is as close as possible to an already accepted
commercial interface. Specialized secure serv-
ers are not driven by this requirement, and yet

357

can still support a standard interface such as
NFS with an RPC service.

7. REFERENCES

[BLF76] Secure Computer Systems: Uni-
fied Exposition and Multics Inter-
pretation, MTR-2997 Rev.l,
MITRE Corp., Bedford, Mass.,
March 1976.

[DIA86] DODIIS Network Security Archi-
tecture and DODIIS Network Se-
curity for Information Exchange
(DNSDQ, Defense Intelligence
Agency, May 5, 1986.

[DOD85] DOD 5200.28-STD, Department
of Defense Trusted Computer
Evaluation Criteria, National
Computer Security Center, De-
cember 1985.

[DOD87] NCSC-TG-005, Trusted Network
Interpretation of the Trusted Com-
puter System Evaluation Criteria,
National Computer Security Cen-
ter, July 1987.

[Fell87] Fellows, J., Hemenway, J. Kelem,
N. and Romero, S., "The Architec-
ture of a Distributed Trusted Com-
puting Base," Proc. 10th National
Computer Security Conference,
1987.

[Linn90] J. Linn, "Practical Authentication
for Distributed Systems," Proc.
IEEE Symposium on Security and
Privacy, 1990.

[McLe87] J. McLean, "Reasoning About Se-
curity Models," Proc. 1987 IEEE
Symposium on Security and Priva-
cy, April 1987, pp 123-131.

[Nels81] B. Nelson, "Remote Procedure
Call," CSL-81-9, Xerox Palo Alto
Research Center, May, 1981.

[Nels87] R. Nelson, "SDNS Services and
Architecture," Proceedings of the
10th National Computer Security
Conference, September, 1987, pp.
153-157.

[RFC88] Sun Microsystems, "RPC; Remote
Procedure Call Protocol Specifica-
tion, Version 2," Internet RFC
1057, June, 1988.

[RFC89] B. Nowicki, "NFS: Network File
System Protocol Specification,"
Internet RFC 1094, March 1989.

[Schn87] D. Schnackenberg, "Applying the
Orange Book to an MLS LAN,"
Proc. 10th National Computer Se-
curity Conference, 1987.

358

MEDIATION AND SEPARATION
IN CONTEMPORARY

INFORMATION TECHNOLOGY SYSTEMS

Marshall D. Abrams, Jody E. Heaney, Michael V. Joyce

The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

ABSTRACT

This paper reexamines the concepts introduced in the Anderson Report and the interpretations of
those concepts in the Trusted Computer System Evaluation Criteria, Information Technology
Security Evaluation Criteria , and the International Organisation for Standardisation (ISO) Access
Control Framework. The authors contend that there has been an evolution in the understanding of
these concepts and features and that the evolution is useful. The authors further suggest that the
fundamental feature of separation is necessary to trust technology and that this concept has been
overlooked in the evolutionary process.1 The authors suggest that the use of separation
mechanisms and providing support for multiple policies are issues that need to be incorporated into
the evolutionary cycle as more mature interpretations of the Anderson Report concepts are
formulated.

1. INTRODUCTION

Contemporary Information Technology (IT) systems are required to satisfy many different needs. These
needs span a broad spectrum and include characterizations such as confidentiality, integrity, availability, safety,
and criticality. Most prior work in the development of trusted technology has concentrated on the properties of
an IT system that satisfy only the confidentiality requirement. In this paper, the original definitional statements
of the basic concepts are reviewed, and the evolution of the concepts and their use in more recent standards are
considered. A major consideration, the use of multiple policies, overlooked in all existing standards is
discussed. The impact of multiple policies on the existing concepts is analyzed. It is suggested in section 3
that both the reference monitor (RM) and Trusted Computing Base (TCB) concepts may require further evolution
to address the broader range of properties required of trusted IT systems prior to the development of future
standards. We present the view that separation kernels, as fundamental constructs, may provide a potential
solution for the further development of trusted IT systems which focus on the use of multiple policies.

2. HISTORICAL PERSPECTIVE

In this section, a historical perspective is provided via a brief review of the original reference monitor and
TCB concepts. This review is followed by discussion of the more recent Information Technology Security
Evaluation Criteria (ITSEC) [1] and the International Organization for Standardization (ISO) Access Control
Framework [2].

2.1 THE ANDERSON REPORT

The Anderson Report [3] introduced several important concepts that continue to be fundamental in the
design and architecture of technical protection mechanisms against unwanted utilization or modification of IT

This work was funded by The MITRE Corporation and the Department of Defense, Number DAAB07-91-C-N751,
Numbers 8812Q and 96440.

359

resources. The terms "secure" and "trusted" have been applied to IT products and systems that provide such
protection. While "trusted" refers to the protection provided by IT, "secure" also includes administrative,
procedural, and physical security.2 The technology that supports such trust is more recently referred to as "trust
technology."

The Anderson Report based its conclusions and recommendations on studies of 1970s systems.
Remarkably, many of the conclusions remain valid twenty years later. In fact, the authors find some of the
conclusions and recommendations in the Anderson Report more generally applicable today than their
interpretations in subsequent documents. Nevertheless, it is valuable to review the conclusions and
recommendations and to suggest updates and extensions for the 1990s.

The Anderson Report identified the following three requirements to defend against the malicious user threat
(1) an adequate system access control mechanism; (2) an authorization mechanism; and (3) controlled execution
of user programs and operating system service functions. Taken together, the three requirements express the
need for controlled sharing.

The reference monitor concept was introduced as an ideal design to achieve controlled sharing. "The
function of the reference monitor is to validate all references (to programs, data, peripherals, etc.) made by
programs in execution against those authorized for the subject (user, etc.). The reference monitor not only is
responsible to assure that the references are authorized to shared resource objects but also to assure that the
reference is the right kind (e.g., read, or read and write, etc.)."[3] The reference monitor validates all access
requests made by subjects for objects according to the access authority of the user. The relationship of these
components is illustrated in figure 1.

| Ujec 1— RM
'•'^"'^

Figure 1. The Reference Monitor Concept

An implementation of an RM is called a reference validation mechanism (RVM). An RVM is the
combination of hardware, software, and firmware that implements the RM concept. The Anderson Report adds
the following guiding principles for the RVM:

• The RVM must be tamperproof.
• The RVM must always be invoked.
• The RVM must be small enough to be subjected to analysis and tests to assure that it is correct.

The Anderson Report goes on to "...develop the design for the security portion of a system,..." which it calls
the (security) Kernel.3

This distinction is attributed to Stephen Walker [4]. A second differentiation views the state of being secure as an
ultimate objective but recognizes systems that are good enough to achieve required security objectives in a
specific environment by stating that these systems are trusted. Trust implies a value judgment. While it is
practically impossible to achieve a (completely) secure system, it is possible to achieve a trusted system.

Note that the Anderson Report referred to the design variously as a Kernel or security Kernel. In quotations from
the report, the "k" in kernel is capitalized per the original material, but in all other instances the "k" is lower case.
In material not related to the Anderson Report, we use the colloquial terminology, "security kernel".

360

2.2 TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA

By 1983, when the RM, RVM, and kernel concepts were incorporated in the original version of the Trusted
Computer System Evaluation Criteria (TCSEC) [5], the terminology had evolved so that concept and
implementation were referred to as "TCB" and "security kernel," respectively. The Anderson Report states
"...the security Kernel design incorporates the reference validation mechanism, access control (to the system),
and authorization mechanisms. Further, it will probably incorporate the administrative programs to represent
and maintain user and program authorizations.... The requirement for controlled execution of a user's program
(or a program being executed on his behalf) is merely a statement that requires the references made by the
program to be authorized for the user on whose behalf the program is being executed." [3] The TCSEC provides
a definition for TCB. The TCB is: "The totality of protection mechanisms within a computer system —
including hardware, firmware, and software — the combination of which is responsible for enforcing a security
policy. A TCB consists of one or more components that together enforce a unified security policy over a
product or system. The ability of the TCB to correctly enforce a security policy depends solely on the
mechanisms within the TCB and the correct input by system administrative personnel of parameters (e.g., a
user's clearance) related to the security policy." [5]

There are advantages in the TCSEC definition of the TCB. It is convenient to have a concise term to refer
to all the security-relevant functionality. It is useful to define the security perimeter for enforcing a security
policy. One of the primary advantages is that the TCB defines the boundary of an evaluated product. From the
evaluation perspective, the vendor is responsible only for what is within the TCB; similarly, the evaluators need
only consider what is included in the TCB. When used this way, everything included in the TCB is "trusted";
everything outside the TCB is "untrusted." Thus the TCB definition establishes a boundary separating trusted
from untrusted code. The ultimate logical extension of this concept is that the TCB should be sufficiently
strong to prevent untrusted hostile code, even code written by an adversary, from violating security policy.

There are also disadvantages in the TCSEC definition of the TCB. First, no framework was provided to
indicate what belonged in the trusted portion of the code. Thus, the trusted part of the system often grew very
large in proportion to the untrusted code. Second, it fails to differentiate regarding the quality of the
implementation's structure. All TCSEC evaluation classes have TCBs, but it is only at class B2 that
requirements are introduced to identify the TCB modules that contain the RVM and to explain why it is tamper
resistant, cannot be bypassed, and is correctly implemented. Third, the TCSEC prescribes a specific security
policy that the system is required to enforce. That is, the TCSEC essentially defined an explicit policy for
confidentiality. The level of detail in policy stipulation means that the TCSEC fails to address situations in
which more than one security policy is required to be enforced. One possible representation of such complexity
might be a TCB for each policy; the relationship among these TCBs could be arbitrarily complex.

2.3 ITSEC

In 1991, the European Communities published the ITSEC: Information Technology Security Evaluation
Criteria [1]. The ITSEC builds on the TCSEC and other national IT security criteria. It is instructive to
consider some of the terminology used in the ITSEC and to contrast it with earlier usage.

The ITSEC emphasizes a distinction between an IT system (a specific IT installation with a particular
purpose and known operational environment) and an IT product (a hardware and/or software package that can be
bought off the shelf and incorporated in a variety of systems). The ITSEC uses the term "Target of Evaluation
(TOE)" to refer to both, believing that "...it is important for the sake of consistency that the same security
criteria are used for both products and systems.... A TOE can be constructed from several components. Some
components will not contribute to satisfying the security attributes of the TOE. Other components will
contribute to satisfying the security objectives; these components are called security enforcing. Finally, there
may be some components that are not security enforcing but must nonetheless operate correctly for the TOE to
enforce security; these are called security relevant." [1]

The ITSEC essentially differentiated between the parts of a 'TCB," identifying them as security enforcing or
security relevant. It is not clear how actively or directly a component must contribute to satisfying security
objectives to be considered security enforcing as compared to security relevant. It is clear that the RVM is
security enforcing. Since identification and authentication (I&A) is a prerequisite for the RVM to enforce a

361

security policy, we consider it to be security enforcing. Audit also contributes to enforcing security policy but
is not a prerequisite for the RVM; therefore, we consider audit to be security relevant.

The ITSEC did not include a specific confidentiality policy, although it does strive to establish a logical
link to the TCSEC. "Throughout the TCSEC, the combination of both the security enforcing components and
the security relevant components of a TOE is often referred to as a Trusted Computing Base (TCB). TCSEC
TOEs representative of the higher classes in division B and division A derive additional confidence from
increasingly rigorous architectural and design requirements placed on the TCB by the TCSEC criteria. TCSEC
classes B2 and higher require that access control is implemented by a reference validation mechanism.... For
compatibility with the TCSEC, the ITSEC example functionality classes F-B2 and F-B3 mandate that access
control is implemented through use of such a mechanism." [1]

The ITSEC also asserts equivalency with the TCSEC TCB requirements. "At higher evaluation levels the
ITSEC places architectural and design constraints on the implementation of all the security enforcing functions.
Combined with the ITSEC effectiveness requirements that security functionality is suitable and mutually
supportive, this means that a TOE capable of meeting the higher ITSEC evaluation levels and which provides
functionality matching these TCSEC-equivalent functionality classes, must necessarily satisfy the TCSEC
requirements for a TCB and use of the reference monitor concept." [1] One hundred percent compatibility
remains elusive [6].

2.4 THE ISO ACCESS CONTROL FRAMEWORK

The ISO Access Control Framework [2] draws upon many of the concepts just reviewed. The framework
identifies component functions within the access control decision making process (see figure 2). One function,
the Access Control Decision Function (ADF), decides whether an initiator may perform an action on a target.4

The value returned by the ADF represents a decision. A second function, the Access Control Enforcement
Function (AEF), receives the decision and enforces it.

Iwmim AEF
1 • • ,,, , ": •

88 H H -:•:-:-:-:•.;.:-;:;.'.•.;.;.-:-:;:-:;:-:-:--'---^^'>:-:::::;:;:;:o •

Decision 1 ADF
^—ADI

Rules

Figure 2. ISO Access Control Framework

The ISO Access Control Framework categorizes the information needed to make an access control decision.
Two general categories of information are identified: access control rules and Access Control Decision
Information (ADI). The rules, logical rule expressions instantiating policies, establish the constraints on
actions performed by the initiator. The ADI is that information made available to an ADF about the initiator,
target, and action, including contextual information that the ADF needs to make its access control decisions.

"Initiator" and "target" are the terms ISO uses for active and passive entities in a system.

362

2.5 RECAPITIII ATION

Briefly reviewing, the Anderson Report started a discussion of concepts related to the development of trust
technology. That discussion appeared at a high level of abstraction and has weathered the intervening years well.
That is, the original concepts it presented are still valid today. The TCSEC introduced the TCB concept, which
included the notion of dividing the trusted and untrusted code. The Achilles' heels of the TCSEC have proved to
be the incorporation of a specific confidentiality policy and the lack of differentiated quality standards for TCB
implementations. The ITSEC, viewing the TCSEC as a training ground, did not include a specific policy and it
specifically addressed the quality issue. In addition, the ITSEC began to differentiate between the various
portions or components of a TCB. Finally, the ISO Access Control Framework is focusing specifically on the
access control mechanism and is differentiating between the various components of that mechanism.

3. CONTEMPORARY CONCEPTS RAISE QUESTIONS

The evolution in the interpretation of the concepts introduced in the Anderson Report has been shown in the
discussions of the TCSEC, ITSEC, and ISO Framework. The evolution in the understanding of these concepts
is useful. Periodically it is good, however, to reevaluate the conventional view and adjust the evolutionary
direction. The fundamental concept of separation is necessary to trust technology, but this concept has been
overlooked in the evolutionary process. Moreover, as the trust IT arena pushes forward, the reality of multiple
policies being enforced by the same system is being recognized as a necessity by more and more developers.

This section uses the observations noted in the preceding paragraph as a point of departure. The section
begins with a comment on a drift in the interpretations of security kernel and RVM as originally presented in
the Anderson Report - an unfortunate by-product of evolution. The issues of separation and mediation are dealt
with and the roles of these concepts in achieving the goals specified in the Anderson Report are discussed.
Finally, an approach is offered for dealing with multiple policies and for meeting the original goals specified for
the reference monitor concept.

3.1 DESIGN AND ARCHITECTURE DISTINCTIONS

In the Anderson Report, the reference monitor, reference validation mechanism, and security Kernel were
proposed as one useful design to counter the malicious user threat. In the TCSEC, a TCB embodying this
design became the one and only architecture that was acceptable for preserving confidentiality. That is, while
the Anderson Report suggested a way to approach the problem, the TCSEC described the only solution that
would be accepted as appropriate trust technology. The ITSEC equivocates on this point, fully agreeing with
neither the Anderson Report nor the TCSEC.

In addition to this distinction regarding accepted designs, one is compelled to mention the drift in
interpretation of security kernel and RVM. The original documents referred to the security kernel as the security
portion of a system. The security kernel was very inclusive and encompassed the RVM as well as access
control, authorization, and administrative mechanisms. In current usage, the terms "security kernel" and "RVM"
are sometimes nearly inverted. That is, the security kernel is construed to be equal to the reference validation
mechanism. In addition, the implementation of a TCB is sometimes described as being composed of a security
kernel and trusted processes. Using the original definitions, one should more correctly describe the TCB
implementation as a reference validation mechanism and trusted processes, or as a security kernel. We believe
that this distinction between reference monitor and TCB provides a measure of insight and that suppression of
this distinction is regrettable.

1.2 SEPARATION AND MEDIATION

In the documents reviewed in section 2, the terms "separation" and "mediation" were found to be used
interchangeably. These are two inherently different mechanisms. The goal of separation is rigorous isolation to
gain integrity or confidentiality or other properties such as TCB self-protection. Appropriate separation of
resources prevents the accidental intermingling of information requiring different forms of protection, and
separation of processes prevents the intentional transfer of information. Separation is a common mechanism
used for the control of information flows within a computer system. On the other hand, the goal of mediation

363

is controlled access, which is generally enforced based on an access control policy. Such a policy is typically
unique and dynamic.

We believe that separation is the more fundamental of the two mechanisms, and that mediation can be
applied on top of the foundation offered by separation. Separation inherently provides support for diverse needs
and is more generic. Separation can provide the structural integrity necessary to support appropriate access
control policies. From this perspective, we are inclined to agree with Rushby's [7] view of separation kernels
or domain separation as being the appropriate base for an IT system.

Rushby and Randell [8] argued against using a security kernel as the only mechanism for security in
general-purpose systems. (Note that their focus was the development of a distributed secure system as opposed
to a secure operating system [OS].) In their paper, separation and mediation are treated as distinct logical
concerns, with separation the more basic principle. Rushby and Randell discussed four types of separation
mechanisms: physically separate components, temporal separation or periods processing, cryptographic
separation, and logical separation. In order for separate components to communicate, they were required to
belong to the same security partition (i.e., a group of components that form a community with agreements in
place for communication between them).

Rushby [7] later considered TCBs for embedded systems. In this work, he proposed that a trusted embedded
computer system should be structured in three layers (see figure 3). The lowest layer was a domain separation
mechanism (DSM). The DSM divided the system into a number of separate execution domains, or virtual
machines, and provided controlled communication channels among the domains. The middle layer contained a
set of resource managers (REMs) that controlled the system resources.5 The highest layer was the set of
applications. The domain separation provided by the DSM allowed untrusted programs to operate in the
domains and not interfere with one another. Both the DSM and the resource managers contained instances of the
reference validation mechanism for adjudicating inter-domain communications and access to resources,
respectively.

Application Application Application Application

MwiiiMi^wumi

m^ir'-'iiiII;•;•"•' |

DSM |

Figure 3. Domain Separation Kernel Concept

•* The REMs provide the abstractions of objects composed from the system resources; the file system manager is a
typical REM.

364

Rushby [9] returned to the subject of kernels, though the orientation was safety kernels. Rushby asserted
that "...kemelized system structures can provide rigorous guarantees that certain faults of commission will not
occur." By this he meant that the kernel cannot enforce good behavior (positive properties); it can only prevent
bad behavior (negative properties). Rushby asserts that kernel structures are well suited to guaranteeing negative
properties (e.g., security) rather than positive properties (e.g., availability or safety). He based this view on the
fact that a security kernel is located at the bottom of a hierarchical structure and, therefore, can enforce security
outward without the cooperation of the rest of the system.

3.3 MULTIPLE POLICIES

The growing interest in new forms of IT system access control is challenging the conventional view of the
access control process. The historical perspectives of access control, although they do not state the assumption,
assume a single access control policy (ACP). Instead of an access control decision based upon a single ACP,
the ACP enforced in future IT systems will likely be a composite of several constituent ACPs (e.g., ACPi,
ACP2, ACP3, ... ACPn). This evolution is occurring without an adequate framework for identifying the
presence of multiple policies and for understanding the interaction of these policies.

Support for the statement that future systems will contain multiple policies is diverse. The research
community has been very active in examining access control policies beyond the Mandatory Access Control
(MAC) and Discretionary Access Control (DAC) policies contained in the TCSEC [5].6 The effect of some of
this work has already been felt - the Trusted Network Interpretation (TNI) [19] includes integrity and availability
evaluation requirements. Some research efforts [20, 21, and 22] have addressed the multiple policies issue
directly.

A proposed extension to the ISO Access Control Framework [22] offers an alternative conceptual
framework for dealing with the presence of multiple access control policies. There are three facets to this
proposed framework (see figure 4). First, to address explicitly the presence of multiple policies in the IT
system, individual Access Control Rule7 sets are proposed, one for each access control policy. Next, instead of
implementing multiple access control policies in a single Access Control Decision Function (ADF), multiple
ADFs are proposed. This combination is intended to provide a clear, explicit, isolated context for each
constituent policy.

The third facet of the proposed framework is a mechanism to combine the decisions of the individual ADFs.
The participation of several ADFs in the adjudication of an access request results in several decisions. To make
an access control decision, however, the decisions from the ADFs must be combined into a single access control
decision to be acted upon by the AEF. To accommodate this situation, a Metapolicy Function (MPF) has been
proposed. This new function is logically positioned between the AEF and the ADFs and combines the decisions
of the various ADFs into a single vote passed to the AEF. (Note that in practice, it may be reasonable to
incorporate the MPF within the AEF. We separate them here for clarity of concept and by function performed.)
The way in which these decisions are combined is defined by a set of Metapolicy Rules (MPRs).

The proposed extension of the ISO Access Control Framework provides a modular view of the access
control process with new functions to address the presence of multiple access control policies. The AEF, the
Metapolicy Function, and the ADFs are the access enforcement components that work together to mediate each
access by an initiator to a target. In terms of the Anderson Report, these components constitute a reference
validation mechanism. The extended framework shown in figure 4 also identifies the rules and data (i.e., user
attributes and policy) upon which the access enforcement components are dependent. These data provide a basis
for the reference validation mechanism to make the final access control decision. To ensure correct, consistent
operation of the reference validation mechanism, these data must be adequately protected and, therefore, are
included in the TCB.

" For a cross-section of related work, see references 10, 11, 12, 13, 14, 15, 16, 17, and 18.

' A role-based access control policy uses rules predicated on the relationships between the attributes of an initiator
and a target. These rules usually rely on a comparison of the sensitivity of the resources being accessed and the
possession of corresponding attributes of users, a group of users, or entities acting on behalf of users [23].

365

Target

Figure 4. Extended ISO Access Control Framework

Separating the enforcement components and support data in the framework extensions may aid in achieving
the goals established by the Anderson Report. By placing the policy definition components (i.e., Access
Control Rules and Metapolicy Rules) outside the reference validation mechanism (but still within the TCB
boundary), the reference validation mechanism is smaller, easier to understand, and more resilient. Isolation of
the support data should allow more straightforward implementations of policy changes. A simple policy change
could involve merely updating the Metapolicy Rules or Access Control Rules. A drastic change could involve a
new set of Metapolicy Rules and the addition of a new ADF and Access Control Rules combination. But in all
cases, a change is well defined and localized.

3.4 POLICY-ENFORCINCi APPLICATIONS

The view that the OS is the only enforcer of an access control policy is also rapidly changing as the
complexity of the applications needed to support the operation of a contemporary enterprise increases. Instead of
just the access control policies being enforced by the OS, many applications create objects and enforce their own
access control policies. We refer to such applications (e.g., database management systems) as "policy-enforcing
applications (PEAs)."

PEAs are related to the TCB via their policy-enforcing role. Drawing upon the ISO Access Control
Framework concepts, a PEA contains data to define the access control policy and a function (i.e., ADF) to
enforce the policy. PEAs may also include their own resource managers. Using this view, we determined that
while an application's ADF is logically part of the application, it is also logically part of the TCB.

366

(Obviously, not all applications are PEAs and therefore not all applications will have an ADF.) The
relationship between the non-security-relevant part of a PEA, the policy-enforcing part, and any resource
management need not be one-to-one. We observe that a TCB should include part of the PEAs as well as the
security enforcing and security relevant parts of the OS.

As more functions are added, it is easy to see that the TCB is quickly becoming too large and unwieldy for
high-assurance modeling and security analysis when multiple policies, including those enforced by applications,
are present. Alternative architectures are needed so that analysis of a baroque TCB overloaded with policy-
enforcing functions can be avoided. We suggest that a domain separation mechanism may prove to be the
fundamental mechanism in the TCB on which the security of the entire system can depend. A domain
separation mechanism, such as that suggested by Rushby [7], could provide integrity for the security enforcing
domains and control all inter-domain communication.8

4. SUMMARY

This paper has reviewed the concepts introduced in the Anderson Report, and the evolution and
interpretation of those concepts in the TCSEC, ITSEC, and ISO Access Control Framework. The evolution in
the understanding of these concepts is useful. However, the fundamental concept of separation — a necessary
feature of trust technology — was overlooked in the evolutionary process. Moreover, as the trust IT arena
pushes forward, the reality of multiple policies being enforced by the same system, while recognized as a
necessity by more and more developers, has not been addressed during this evolution.

In this paper, we have suggested the use of a domain separation mechanism as a fundamental mechanism of
trust technology. We suggest that such a mechanism could be employed to isolate security-enforcing functions
as sets of domains to address multiple policies. Such domain separation may also yield positive results if
applied for policy-enforcing applications. Further research is required to determine the complete value of using a
domain separation mechanism as the foundation for building trusted IT systems.

As previously noted, none of the existing documentation addresses the possibility of multiple policies.
This is a difficult issue. There are no tools currently available that support the determination of the impact of
multiple policies on a system. Lacking such tools, there is no way to evaluate the interaction of constituent
access control policies and assess the points of intersection and/or conflict One dependency for the development
of such tools is the identification of common terminology for expressing policies. While formal languages are
available, few policies or models are actually formally specified. The tools that use the formal languages
support only single policies and only provide verification support at the current time. Thus, there is no ready
solution to addressing multiple policies within a single TCB, though we believe this to be an area in need of
significant research.

Both the use of separation and support for multiple policies are issues that need to be incorporated into the
evolutionary cycle as more mature interpretations of the Anderson Report are formulated. Future standards and
criteria cannot afford to ignore the user's view that multiple, tailored policies are desirable, nor the attendent
support for multiple policies offered by domain separation.

LIST OF REFERENCES

[1] European Communities — Commission (EC), 1991, ITSEC: Information Technology Security
Evaluation Criteria, Office of Official Publications of the European Communities, Luxembourg.

[2] International Organisation for Standardisation, International Electrotechnical Committee, Joint Technical
Committee 1, Subcommittee 21, 1991, "Working Draft on Access Control Framework," document
number 6188, Draft.

[3] Anderson, J. P., October 1972, Computer Security Technology Planning Study, ESD-TR-73-51, Vol. I,
AD-758 206, ESD/AFSC, Hanscom AFB, Bedford, MA.

It appears that this use of the Domain Separation Mechanism implements a noninterference policy. Further
investigation is required.

367

[4] S. Walker, Personal Communication.

[5] Department of Defense (DoD), 1985, Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, original version published in 1983.

[6] Branstad, M, C. Pfleeger, D. Brewer, C. Jahl, and H. Kurth, October 1991, "Apparent Differences
Between the U.S. TCSEC and the European ITSEC," Proceedings of the Nth National Computer
Security Conference, Baltimore, MD.

[7] Rushby, J., September 1984, "A Trusted Computing Base for Embedded Systems," 7th DODINBS
Computer Security Conference, Gaithersburg, MD.

[8] Rushby, J.M., and B. Randell, April 1983, "A Distributed Secure System" (extended abstract),
Proceedings of the 1983 Symposium on Security and Privacy, Oakland, CA.

[9] Rushby, J., October 1986, "Kernels for Safety?", Proceedings of the Safety and Security Symposium,
Centre for Software Reliability, Glasgow, Scotland.

[10] Biba, K. J., April 1977, Integrity Considerations for Secure Computer Systems, ESD-TR-76-372,
MTR-3153, The MITRE Corporation, Bedford, MA.

[11] Clark, David D., and D. R. Wilson, April 1987, "A Comparison of Commercial and Military Computer
Security Policies," Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA.

[12] Graubart, T. D., October 1989, "On the Need for a Third Form of Access Control," Proceedings 12th
National Computer Security Conference, Baltimore, MD.

[13] La Padula, L. J., 12 June 1990, "Formal Modeling in a Generalized Framework for Access Control,"
Proceedings of the Computer Security Foundation Workshop III, Franconia, NH.

[14] La Padula, L. J., August 1991, A Rule-Base Approach to Formal Modeling of a Trusted Computer
System, M91-021, The MITRE Corporation, Bedford, MA.

[15] McCollum, C. J., J. R. Messing, and L. Notargiacomo, May 1990, "Beyond the Pale of MAC and
DAC — Defining New Forms of Access Control," Proceedings of the 1990 IEEE Symposium on
Research in Security and Privacy, Oakland, CA.

[16] Abrams, M. D., J. Heaney, O. King, L. J. La Padula, and I. M. Olson, October 1991, "Generalized
Framework for Access Control: Towards Prototyping the ORGCON Policy," Proceedings 14th National
Computer Security Conference, Baltimore, MD.

[17] Abrams, M. D., K. W. Eggers, L. J. La Padula, and I. M. Olson, October 1990, "Generalized Framework
for Access Control: An Informal Description," Proceedings 13th National Computer Security
Conference, Baltimore, MD.

[18] Olson, I. M., and M. D. Abrams, December 1990, "Computer Access Control Policy Choices," Privacy
& Security, Elsevier.

[19] National Computer Security Center (NCSC), 31 July 1987, Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria, NCSC-TG-005,
Version-1, NCSC.

[20] Adkins, M., G. Dolsen, J. Heaney, and J. Page, October 1989, "The Argus Security Model," Proceedings
12th National Computer Security Conference, Baltimore, MD.

[21] Hosmer, H., June 1991, 'The Multipolicy Machine, A New Paradigm for Multilevel Secure Systems,"
Standard Security Label for GOSIP, An Invitational Workshop, NISTIR4614, National Institute for
Standards and Technology.

[22] Abrams, M. D., and M. V. Joyce, 1992, On Multiple Access Control Policies In A Trusted Computing Base,
unpublished, The MITRE Corporation, McLean, VA.

[23] International Organisation for Standardisation, 1988, Information Processing Systems - Open Systems
Interconnection - Security Architecture, International Standard 7498-2.

368

METAPOLICIES II
Hilary H. Hosmer
Data Security Inc.
58 Wilson Road

Bedford, MA 01730

ABSTRACT

Metapolicies, or "policies about policies", may become a powerful concept for developing the
large, complex, and interrelated trusted systems that military, commercial and non-profit
organizations need today. Metapolicies provide a framework for clarifying policies, for
organizing security properties, and for successfully coordinating security policies and subpolicies.
In a TCSEC unified-policy environment, metapolicies may be implicit, embedded, and fixed. In
a multipolicy system of multiple, perhaps contradictory policies, metapolicies must become
explicit and support policy flexibility. This paper explores implicit metapolicies, metapolicies for
policy conflict resolution, and other characteristics and functions of metapolicies.

INTRODUCTION

RELATED WORK

This paper consolidates and expands the metapolicy concept we introduced in "Integrating
Security Policies"1, The Multipolicy Machine. A New Paradigm For Multilevel Secure
Systems"2,, and "Metapolicies I".3 It also builds on the security framework papers of John
Dobson4, John McDermid and Ernest Hocking of York, England5 on the work of the Policy
Workbench team at George Mason University6, on Holden's management policy work7, on
Moffet and Sloman's research into policies6, and on the Generalized Framework for Access
Control (GFAC), a rule-based approach started by Planning Research Corporation (PRC)9 and
expanded by MITRE10

PRELIMINARY DEFINITIONS

Policy-making is a human enterprise, integrating many complementary, contradictory, fuzzy, and
changing human values. A policy is a set of constraints established by an accepted authority to
facilitate group activity. A good policy provides guidelines for application scope, standard
practice, exceptions, and change over time. An organization normally has many policies, which
sometimes come into conflict. Subpolicies are policies which contribute to a broader policy.
Security policies are the plans of an organization to meet its security goals, often generalized
as confidentiality, integrity, and availability. Those portions of the organization security policies
which are implemented on the computer are called automated security policies11. Automated
security policies traditionally comprise identification and authentication (l&A) policies, access
control policies, audit policies, and backup and recovery policies, among others. Automated
policies may be administratively-imposed12 (legally-mandated, organizationally-required, derived
from standards, or driven by evolving ad hoc computer norms) or user-controlled (discretionary
access control).

369
Copyright 1992 Data Security Inc.

METAPOLICIES DEFINED

Metapolicies are policies about policies. They make the rules and assumptions about policies
explicit rather than implicit and coordinate the interaction of multiple policies.

A Metapolicy may be either
1) a set of rules about a single policy, specifying what kind of policy it is, what elements
make up the policy, the universe or domain to which the policy applies, who has the
authority to change the policy, the procedure for changing policies, and the relationships
to subpolicies;

or
2) a set of rules for coordinating the enforcement of multiple policies, specifying, for
example, the order in which multiple policies are enforced, and which results have
precedence if a conflict in policies occurs.

This paper will show that metapolicies can:
Describe policy structure and interrelationships;
Control policy additions or modifications;
Coordinate policies and subpolicies.

Metapolicies provide several benefits. They clarify security policies, including underlying
assumptions, interactions and integration. They increase policy flexibility, allow multiple policies
in a system, create a framework for complex security policies, permit diverse and rich security
policies, and permit tailored policy systems to match the legal and organizational policies of
diverse clients. They also have drawbacks. They are an unproven concept, add complexity to
already complex systems, and may make trusted systems take even more time and money to
design, develop and implement.

EXPLORING METAPOLICIES

MAKING IMPLICIT METAPOUCIES EXPUCIT

Explicit metapolicies are not a new concept. For example, social clubs and other organizations
often have a set of rules for the dub and a separate set of by-laws which describe how the club
rules are established and changed. The club rules are the club's policy, and the by-laws are the
club's explicit metapolicy. However, security metapolicies are usually implicit and built into both
hardware and software.

For example, in SCTC's LOCK system, a user who wants to get access to an object must meet
the combined access control requirements of three separate policies: a standard MAC policy, a
type enforcement policy, and an integrity policy.13 A Boolean AND operation built into the
hardware combines the results of the user's request to access the object under each of the three
policies. This built-in metapolicy can't be changed to some other combination policy, such as
OR or XOR which might be desirable when inherent conflicts like those identified by Bums.'4 are
encountered between security policies. Immutability provides assurance, but the user loses
flexibility. This is unfortunate because the application owner is often the only appropriate person
to choose which policy should have precedence when policies conflict[13].

Most security metapolicies today are as invisible and immutable as in the LOCK example. To
illustrate we uncover nine metapolicies13 implicit in a liberal adaptation (see Figure 1) of one of
the best known security policies, Bell and LaPadula's (BLP) Simple Security Property. To
illustrate what kinds of metapolicies are needed, we name the policy elements and add real-life
concerns and constraints.

370

POLICY NAME: No Read Up
POLICY TYPE: Access Control Subpolicy
AUTHORITY. Secretary of Defense
CHANGE PROCESS: Consultation with Armed Services

APPLICATION DOMAIN
This policy applies at all times to all computer systems containing
USA military classified data.

DOMAIN INTERFACES
This policy may relate to NATO and SEATO in accordance with Reg. X.

INFORMAL STATEMENT OF POLICY
No user or process representing a user may read data at a higher
classification level than the user's clearance level.

EXCEPTIONS
Users or processes with downgrade privilege are except ed

RELATED AUDIT POLICIES
Security-relevant events must be auditatXe.
Attempted violations must be auditable
Any violation must be audited and alarmed.
Every use of downgrade privilege must be audited.

OTHER RELATED POLICIES
Users must identify themselves and be authenticated at login.

PRECEDENCE RULES
This policy has priority over any other access control policy.

FORMAL STATEMENT OF POLICY
S Subject: User, process, active entity
O Object: File, passive entity
CR CleaRance
CL Classification

May.Read (S, O)
Begin

If CR(S) >• CL(O) \check simple security\
then May Read = YES

Else
If Downgrade(S)= YES downgrade privilege?\

then May Read = YES.
If Audit (May_Read) = YES

then write audit record.
End

OTHER

Figure 1. Adaptation of the Simple Security Property To Show Metapolicies

The No-Read-Up access control policy illustrates several points. To be implemented on an AIS
a security policy needs explicit: a) scope, b) description, c) structure, d) interrelationships, e)
control, and f) formal and informal renderings for clarity for both machines and people.
Metapolicies, or policies about policies, provide a framework for these usually implicit elements.
The metapolicy components implicit in Figure 1 are:

371

1. A Policy Description Metapolicy The names of the elements, the structure of the
presentation, and the conventions of the policy description (such as both informal and formal
policy statements) constitute a framework that gives meaning to the elements of the policy much
the way that data description metadata gives meaning to raw data elements in the database
world. The GMU Policy Workbench team calls this descriptive framework a "policy schema".

Policy Description Data Type Length Criticality Req. Signer Modifier

Policy Name Alphanumeric 20 30 SctyDOD SSO
Policy Type Alphanumeric 5 30 None SSO
Authority Alphanumeric 30 50 SctyDOD SSO
Start Date Date 6 20 President SSO
Expiration Date Date 6 25 President SSO
Informal Model Alphanumeric 900 20 None SSO
Formal Model ZED 1500 40 Sys Manager SSO
etc.

Figure 2A. Policy Description Metapolicy

The simplified metapolicy example in Figure 2A names the elements of the policy, provides data
type and length information (important for automated policies), and provides control information
for each element. Signers and modifiers indicate who may approve changes to the policy
element and who may actually modify/add/delete the element in an automated security system.
The criticality code indicates how much impact a change in the policy element will have on the
rest of the policy and/or the security of the system. Many other policy data items could be
included.

2. A Policy Relationship Metapolicy A relationship between policies is described by a
metapolicy which specifies the policies involved, whether the relationship is hierarchical or
collegial, how important the relationship is to the security of the system, which policy is executed
first, whether they are always executed together, which has precedence in case of conflict, and
who created and who can change the relationship. Figure 2B illustrates.

Policy Relationship Metapolicy Policy 1 Policy 2

Policy Names MAC DAC
Relationship (Parerrt/Child/Colleague) Collg Collg
Execute (With/Before/After/Not) Before After
Precedence Level in this relationship 100 50
Criticality of relationship 80
Creator of relationship X. Jones
Authorized Modifiers of relationship Sec. DOD & SSO

etc.

Figure 2B. Policy Relationship Description Metapolicy

A generalized standard format for policy descriptions and policy relationships, designed to be
flexible like the proposed GOSIP standard label, would facilitate the integration of multiple
policies within and across systems.

372

3. A Policy Constraint Metapoiicy This metapolicy specifies the constraints put on the policy.
These could include restrictions on the application domain, environmental constraints like
whether or not we are at war, time limitations on the policy due to expiration date, phased
processing, or different day and nighttime policies16. Other constraints might exempt certain
users or roles from the policy, or require the policy to be executed in combination with another
policy.

4. A Subpolicy Interaction Metapolicy. The policy in Figure 1 explicitly operates in concert
with many subpolicies, such as login, audit, downgrade, label interpretation, and application-
specific access control policies. To emphasize these often overlooked subpolicy relationships,
such as those shown in Figure 3 below, their many possible interactions are defined in the
Subpolicy Interaction Metapolicy.

Security
I

Confidentiality

I II II
I & A Downgrade Access Control Audit Other

I "l
MAC DAC

I I
No_Read_Up lnterpret_Label

Figure 3. Hierarchical Subpolicy Structure

Subpolicy interactions could also be a described with the Policy Relationship Metapoiicy, since
each subpolicy is a policy in its own right.

5. The Organization Control Metapolicy This metapolicy describes who owns the policy, who
created the policy and when, the policy expiration date, whether the policy can be renewed or
modified, and what the processes are for distribution, renewal and modification. It may also
include policy assurance status, legal status, the source of the policy (eg. Executive Order
12356) and in what documents the policy appears. The organization control metapolicy is
critical for policy flexibility and for policy conflict resolution. The importance of this control
function is underscored by McDermid and Hocking17 who identify three pages of control
objectives for security policies, and by Moffet and Sloman who see explicit control as essential in
the commercial sector where dominant authority is not as clear as in the military.18 An example
organization control policy is included in Figure 4.

6. Automated Information System (AIS) Metapolicy Formal and informal models tend to be
abstract and omit implementation details. This metapolicy is needed to absorb all the additional
detail needed to describe and control the implementation of the policy in an automated
information system. This detail might include constraints on implementation mechanisms,
requirements for configuration management and audit, and other computer-oriented information.

7. Site-Specific Metapolicy The Multipolicy Paradigm gives the local SSO the ability to exert
much more control over system policy than is now possible. The site-specific metapolicy lets the
SSO describe and control administrative or domain-wide policies entered at the user site.

8. Multipolicy Coordination Metapolicy In a multipolicy machine, a security policy must
interact with one or more security policies which may all claim precedence. This metapolicy
coordinates multiple security policies in accordance with the user's priorities and tradeoffs. This
may be a complex metapolicy, with many levels, domains, and implementation forms. An
example of policy coordination by metapolicies appears in Figure 5.

373

POLICY NAME: Organizational Control
POLICY TYPE: Metapolicy
AUTHORITY: AIS Policy Center
CHANGE PROCESS: Two SSOs with written approval from AIS Policy Center

UNDERLYING POLICY
Policy Name: No Read Up
Source of policy: Executive Order 123456
Legal Status of policy: Mandated by federal law

POLICY PEDIGREE
Owners: DoD
Creator: Defense AIS Security Policy Center
Date Created: 1962
Expiration Date: 1992
Authors: John Smith, Sarah Jones
Reviewers: MITRE, Aerospace

ASSURANCE
Policy Criticality: High
Assurance Level of Policy: B3
Policy Evaluator: Commercial Evaluation Center #3

APPROVAL PROCESS
Final Authority: President of the USA
Approving Organizations: US Department of Defense

Army, Navy, Marines, Air Force, Coast Guard,
Defense Intelligence Agency, DARPA, Joint
Chiefs of Staff

Approval Sequence: Approving organizations give their approval in parallel,
then it goes to the President

POLICY IMPLEMENTATION
Effective Date: 1963
Application Scope: Applies to all USA classified data
Oversight Committee: Joint Chiefs of Staff Committee 234

RENEWAL
Renewal authorization: President of USA
Renewal terms: 3 to 10 years
Renewal Process: Service and JCS approval

MODIFICATION
Authorization for modification: President of USA
Policy modifier: US AIS Security Policy Center
Process for modification. Review by all services
Last Date Modified: 1985

DISTRIBUTION: (Unlimited/Limited/Controlled)
Unlimited

PUBLICATION DATA:
Publisher DoD Publications Center
Document: Military AIS Security Policy

POLICY USED IN:
Government Documents: DOD 654321, AF 802-456
Commercial Hardware: all MLS products
Commercial Software: all MLS products

Figure 4. Organizational Control Metapolicy

374

Figure 5. Metapolicy for Multipolicy Ccx>rdination>9

(Fiaure taken from The Multipolicy Paradigm", also in these proceedings).

SUBJECT Requ—1 _ POUCY
ENFORCER

Operate

On???

POUCY
DECIDER

OBJECT

Vote(Y/N)

POUCY1 POUCY 2
METAPOUCY

Precedence Rules/Data

Vote 2: Rank 2

Votel: Rankl

1) When a 'Subject' wishes to operate on the 'Object1, the request must be mediated by the
'Policy Enforcer'.

3) The Enforcer routs the request to the Policy Decider which, based upon the data's policy
domain codes, distributes portions of It to various Policy Decision-Makers (labeled Policy 1 and
Policy 2).

4) Using rules and decision data to evaluate the request, each Policy Decision-Maker sends a
Yes', 'No', 'Dorti Care', Undecided' or a number on a continuum (fuzzy logic) vote to the
Metapolicy. A rank indicating the importance of the policy goes along.

5) The votes of all the individual policies (Vote 1 and Vote 2 hi this example) are combined by
the Metapolicy according to Its rules and data and the ranks of the policies.

6) The resulting "Yes' or No' vote is sent back to the Policy Enforcer which then permits or
denies the requested operation.

375

9. Domain Interface Metapolicy Metapolicies are most critical at security policy domain
interfaces. For example, if data labelled for one policy domain must be transferred to another
policy domain, there will be a policy about policies, or metapolicy, describing the rules for any
automated transfer.

In summary, the Simple Security Property has several implicit metapolicies:
Policy Description Metapolicy Policy Relationship Metapolicy
Policy Constraint Metapolicy Subpolicy Interaction Metapolicy
Organization Control Metapolicy Automated Information System Metapolicy
Site-Specific Metapolicy Multipolicy Coordination Metapolicy.
Domain Interface Metapolicy

CHARACTERISTICS OF METAPOUCIES

The primary objective of metapolicies seems to be to provide control for the organization, for the
AIS, and for the security subsystem.

Every security policy appears to have multiple metapolicies. Metapolicies may coordinate many
policies. Implicit metapolicies aren't obvious, and there seems to be an art to making the implicit
explicit. There are general rules which hold for all situations, and there are sets of rules which
apply to certain situations, but not others. There are bilateral agreements which apply only to
two parties. Metapolicies must be able to handle all these possibilities: general rules, group or
subset rules, and individual rules.

Metapolicies differ vastly in scope and significance and must be well-structured so that it is easy
to see what prevails over what. There will be metapolicies about metapolicies as well as
policies. Their implementation may vary in complexity from a single value to elaborate modular
and layered data structures. Layers may correspond to the layers of the organization, the layers
of the computer system or the layers of security policies.

Like any security policy, all metapolicies must be protected from tampering or interference.
Changes or additions must be audited. If stored on hardware or firmware, validation of the
correct operation of the hardware or firmware must be provided. In short, all the requirements
that apply to any Trusted Computing Base (TCB), apply to metapolicies, since those portions
which are implemented in a computer system become a component of the TCB.
Security policies evolve overtime. Metapolicies, by providing control data like that in Figure 4,
provide support for conscious and careful evolution of a variety of security policy forms.

Changes to metapolicy are security-relevant events, just like changes to policy. They should be
implemented only by the system security officer or a representative. Major changes might
require the two-man rule. All changes to metapolicies should be audited. In systems that share
duplicate policies, there should be periodic (but surprise) configuration audits to verify that there
have been no unauthorized changes to the shared policy.

METAPQWICVFMNCTIQN3

From the discussion above, it is clear that metapolicies can play several key functions in trusted
systems. They describe policies, support control of policies, provide policy flexibility, coordinate
policies, enforce tradeoffs between competing policies, and aid the interfacing of policy domains.
They also can help standardize the policy formats and improve the interchangeability of policies.

376

METAPOUCY DEVELOPMENT

Knowledge engineering strategies from expert systems will be useful in making the implicit
explicit and in defining policy and metapolicy rules. Formal modeling will provide rigorous
analysis of policies, metapolicies, and their interactions. Graphic techniques, such as those used
by database designers, can help visualize the metapolicy relationships, groupings, and
interactions.

METAPOUCY IMPLEMENTATION

Metapolicies can be implemented in many ways. The Policy Workbench group recommends an
active data dictionary for representing policies [and metapolicies] and their relationships. Moffet
and Sloman recommend an object-oriented database model for policies [and metapolicies]
because of the hierarchical structure, inheritance and ability to define interactions between policy
objects. The GFAC group and their PRC predecessors recommend an expert-system style rule-
base for the policy [and metapolicy rules]. Eric Leighninger of DRC recommends the Backus
Naur Form (BNF) for policy representation. Our earlier work[1] sketched several possible
architectures for multipolicy networks and distributed systems. Regardless of the
implementation method, it is clear that security policies require complex data structures, rather
than simple embedded rules.

CONCLUSION

Security policies are much more sophisticated than originally thought when the DOD security
policy model dominated the field. Many researchers have looked for a framework which would
help develop and manage these sophisticated policies. Metapolices, or policies about polices,
are an intuitive approach which builds on what is already implicit in any security policy
implementation. The Multipolicy Paradigm with metapolicies promises a conceptually elegant
framework for managing multiple and sophisticated security policies. However, there is much
research and development to be done before the promise becomes a reality.

This paper surveyed the Metapolicy concept. It illustrated that metapolicies can clarify
underlying policy assumptions and relationships and facilitate expression of the variety, richness,
and multiplicity of security policies. It illustrated how metapolicies permit the controlled
interaction of policies and subpolicies, making complex policy systems possible.

Metapolicies, or 'policies about policies', may become a powerful concept for coordinating the
multiple, complex, and interrelated security policies that military, commercial, and non-profit
organizations need today.

ACKNOWLEDGEMENTS

The Air Force's Electronic Systems Division sponsored this research with a Small Business
Innovative Research Phase I grant under contract number F19628-91-C-0157. Grace
Hammonds of AGCS, Rae Bums of MITRE and three anonymous reviewers made many
constructive suggestions. J. Bret Michael of IDA and GMU critiqued the paper and contributed
recent technical work. Marshall Abrams of MITRE provided unpublished work in the multipolicy
area. Eric Leighninger of DRC supported our work in muttipolicies and outlined research
directions. Victoria Ashby of MITRE and Rowena Chester of Martin Marietta created the
opportunity to present the multipolicy concept in two ACM SIGSAC workshops at two major
conferences. Thank you all.

377

REFERENCES

1 Hosmer, Hilary H , "Integrating Security Policies", Proceedings of the Third RADC Database Security Workshop, June 5-7,
7990. Castle, N. Y„ MITRE MTP 385, May 1991

2 Hosmer, Hilary H , "The Muttpolicy Machine: A New Paradigm for Multilevel Secure Systems", Standard Security Label for
GOSIP: An Invitational Workshop, Gathersburg, MO, NISTIR 4614, June 1991

3 Hosmer, Hilary H . "Metapohcies I", ACM SIGSAC Data Management Workshop, San Antonio. TX, December 1991.

4 Dobaon, John, "Specifying Access to Information: Who, Why, and What", University of Newcastle upon Tyme, July 1991

5 Dobson, J E. and J.A. McDermid, "Security Models and Enterprise Models", Database Security, II Status and Prospect,
North Holland. 1989

Dobson, John, and McDermid, John, "A Framework for Expressing Models of Security Policy", IEEE Computer, Jury 1989.

6 Sibtey, Edgar, James B Michael, and Richard Wexelblat, "An Approach to Formalizing Policy Management", CECOIA2-
Proceedngs of the 2nd International Conference on Economics and Artificial Intetgence, Pergamon Press, Oxford, England,
1991.

Sibtey, Edgar H , James Bret Michael, and Richard Wexelblat, "Use of an Experimental Policy Workbench: Description and
Preliminary Results", Proceedings ofthelFIP TC11.3 5th Working Conference on Database Security, Norm-Holland,
Amsderdam, 1991.

7 Hotden, D.B. "An Exploration of the Nature of Management Policy", ESPRIT/5165/harw/
T2.1/1_0, AEA Industrial Technology, Harwell Laboratory, Oxfordshire, UK S February 1991.

8 Moffett, Jonathan D. and Morris S. Skxnan, "The Source of Authority For Commercial Access Control", IEEE Computer,
February 1988.

Moffett, Jonathan D. and Morris S. Skxnan, "The Representation of Policies as System Objects", Proceedmgs of the
Conference on Organizational Computer Systems (COCSV1) Atlanta, Georgia 5-8 November, 1991.

9 Page, John. Jody Heeney Marc Adkirw Gary Doteen "Evaluation of Security ModH Rute Basis". Proceedings of fne f2ff?
National Computer Security Conference, Baltimore, Maryland, 1989

10 Abrams, M.D., K.W. Eggers. L. J. La Padula, and I.M. Orson, "A Generalized Framework for Access Control: An Informal
Description," Proceedmgs 13th National Computer Security Conference. WasTwigion D C OctobeM 990

11 Sterne, Daniel, "On the Buzzword Security Policy", Proceedings of the 1991 IEEE Computer Security Symposium on
Research in Security and Privacy, Oakland, CA, May 20-22,1991

12 Abrams Marshal, Nuance Forum, Dockmaster, 1991

13 Haigh, T ACM SIGSAC presentation, NCSC Conference. Washington, DC October 3,1991.

14 Burr•, R K, "Referential Secrecy", Proceedings of the IEEE Q3mrjuter Secur% Sympc«ijfTi, C«kland, CA, 1990

15 Six were onginalty included in -Metapoectes l"[3]

16 The policy constraint rriet^poiicy is sirmlar to r^

17 McDermid, John, Ernest Hocking, "Security Pokcws for Integrated Project Support Environments", Database Security III:
Status and Prospects, North Holland, 1989

18 Moffet, J. and M. Skxnan, "The Source of Authority for Commercial Access Control", IEEE Computer, February 1988.

19 The diagram and description combine our diagram of metapolicies rasotvlng policy conflicts from [1] with Dr. Marshall
Abrams' unpublished policy conflict resolution process for access control policies which uses a voting approach from
LaPadula, Leonard J. "A Rule-Base Approach to Formal Modeling of a Trusted Computer System", M91 -021, August 1991

378

A Model
for the

Measurement of Computer Security Posture

Lee Sutterfield
Todd Schell

Gregory White
Kent Doster

Don Cuiskelly

Abstract

The Air Force is incorporating the use of Statistical Process Control
(SPC) methods within the Air Force Command, Control, Communications
and Computer Systems Security Program (C4 Systems Security Program). The
Air Force C4 Systems Security Program is based on the premise that
significant improvement in security posture is unattainable using a
traditional authoritarian approach to policy making, procedures
development, education and awareness training, etc. Instead of driving such
actions only through regulation, they must be based on a clear understanding
of the quality of security posture in the field. The key to the measurement of
the quality of security posture is the use of Statistical Process Control. SPC
theory states that any activity can be clearly defined as a process and the
effectiveness of that process can be most effectively improved through the
careful measurement and incremental modification of parts of the process.
The measurement of security posture has never been considered an easy task.
Computer security, in particular, involves so many variables it's hard to
know where to begin in the definition of security posture, much less the
measurement of it. This paper provides the beginning of an on-going effort
to define computer security posture in meaningful, measurable terms. The
taxonomy presented has twelve levels of computer security concerns.
Though we use the term "computer security" throughout the paper it is
important to understand that the taxonomy is intended to account for all
security considerations involved in the three main security disciplines most
directly affecting the security posture of computer systems—Communications
Security (COMSEC), Computer Security (COMPUSEC), and Emanations
Security (TEMPEST). The model provides a framework in which the total
security environment for a system may be examined in an organized way.

379

BACKGROUND

The use of Statistical Process Control (SPC) to improve the quality of
products and services is well documented. SPC has been successfully used in
the manufacturing and service industries in Japan and increasingly within
the United States and Europe. A full discussion of SPC is beyond the scope of
this paper. However, some perspective on the use of SPC in C4 Systems
Security within the Air Force is needed to understand the need for the
taxonomy presented in this paper.

SPC has traditionally been used to improve processes within well
defined boundaries such as a particular manufacturing process or a well
defined administrative process within an organization. Candidate processes
for the application SPC usually have a few common characteristics. First, the
process can be clearly diagramed in a flow chart showing all actions and
actors. Second, a "process owner" is easily identifiable. The process owner is
the highest authority within the organization that controls key components
of the process. The process owner takes on the ultimate responsibility for the
improvement of the process. Third, any organizational boundaries that must
be crossed in improving the process must be under the ultimate control or at
least strong influence of the process owner. These three characteristics of a
candidate process for the application of SPC become increasingly difficult to
handle as the complexity of the process and the size of the organization
grows.

It is this complexity factor that makes the application of SPC to Air
Force C4 Systems Security difficult. C4 Systems Security is complex. The
overall security posture of a computer system will involve issues and
resources ranging from security policy and procedures; organizational
structure; education and awareness; physical and environmental security;
connectivity issues; access controls; operating system trust; hardware and
media control issues; personnel security and others. Which areas are key to
good security posture? Are they quantifiable? In addition, the size of the Air
Force as an organization makes it difficult to establish a common process for
computer security for all Air Force organizations.

Another issue of concern with the use of SPC is that it has traditionally
been most effectively used when the management culture of the organization
is built on what is referred to as Total Quality Control or Total Quality
Management philosophy. SPC by nature requires a long-term approach to the
constant improvement of products and services. Without the foundation of
Total Quality Management (TQM) principles throughout the organization it
is difficult to effect any long-term, continuous improvement in quality. The
Air Force, along with many other government organizations and agencies,
has embarked on the TQM path. The adoption of TQM philosophy

380

throughout the Air Force will make the success of our use of SPC methods
more likely. However, the use of SPC methods without the benefit of the
wide practice of other TQM ideas can still provide a more organized and
thorough approach to improving security posture.

The incorporation of Statistical Process Control (SPC) methods within
the Air Force C4 Systems Security Program has generated a number of
initiatives. The heart of the program is the C4 Systems Security Vulnerability
Reporting Program (CVRP). Under this program we are more clearly
defining a number of processes and developing special tools, expertise and
procedures to improve those processes. As examples, we have developed the
Automated Risk Evaluation System (ARES) and the C4 System Security
Management System (CMS) to standardize and improve the the risk analysis
and accreditation process, the Electronic Security Engineering Teams to
improve the system certification process, and the Air Force Computer
Emergency Response Team (AFCERT) to control the vulnerability and
incident handling processes. We have also built Electronic Security Survey
Teams (ESSTs) to act as the primary resource to objectively measure
organizational security posture in the field. The security posture model
presented in this paper is the basis for the measurement strategy and
techniques used by the ESSTs to quantify and measure C4 Systems Security
Posture.

All of the initiatives and implications of the use of SPC in the Air
Force C4 Systems Security Program are beyond the scope of this paper. We
have addressed these issues in other writings. This paper focuses on the
definition of the "Air Force C4 Systems Security Posture Model."

SECURITY POSTURE DEFINITION

C4 Systems Security Posture is currently defined as the instantaneous
sum of all security policy, procedures, guidance, technical and administrative
resources, operational activities and general system use practices that provide
for the confidentiality, integrity, and uninterrupted service of C4 systems and
the information processed and controlled by those systems. In this definition
is implied all the security issues as defined by the traditional communications
security (COMSEC), computer security (COMPUSEC), and emanations security
(TEMPEST) disciplines. It is further implied that the one constant of security
posture is that it will change. Because of the obvious role of people in the
security process and the ever changing technologies involved, it is clear that
security posture is continuously variable. The good security posture of today
will be the poor security posture of tomorrow.

381

SECURITY POSTURE MEASUREMENT

During the last two years we have experimented with various methods
and resources to measure security posture in the field. We formed adhoc
teams to measure the C4 systems security posture of organizations. These
teams found numerous security problems in every organization visited.
Despite a fairly large and active C4 Systems Security Program within the Air
Force, the C4 systems security posture of AF organizations is not what it
should be. Considerable effort has been expended to build and implement
strong education and awareness efforts, organized R&D efforts, vulnerability
and incident handling capabilities, and strong policy, procedures and
guidance. We have many people at many levels doing their best to build
good security posture and yet their efforts don't seem to be effective.

During these initial efforts to measure security posture we learned
important lessons that are changing the way the C4 Systems Security Program
is conducted in the Air Force. Though a discussion of all of those lessons are
beyond the scope of this paper, one lesson which stands out among the rest is
the need to accurately measure security posture in the field. The C4 Systems
Security Posture Model presented here forms the foundation of the effort to
systematically measure security posture throughout the Air Force C4
community.

Air Force C4 Systems Security Posture Model

The model attempts to identify the major factors that provide layers of
security for any C4 system. It is important to understand that this model is
not an attempt to define generic security features and requirements for
computer operating systems or related security technologies. It is an attempt
to provide a standard framework in which the total security environment for
a system may be examined in an organized way.

The hierarchical layers start at the organizational level with Level 1
and end within the system at Level 12. It is important to note that the model
is not based on current regulatory or procedural requirements within the Air
Force. The model is based on the major factors that comprise consistent, high
quality security posture. The most important of the levels are of course at the
top. Without the top levels it will be impossible to build and maintain
consistent security over the long-term. However, the practical
implementation of good security practice occurs at the lower levels.

A cursory examination of the model may lead some to suggest that
several levels in the model should be combined to simplify the model,

382

AIR FORCE C4 SYSTEMS SECURITY POSTURE MODEL
Level 1: System Mission. A statement describing the purpose and function of the
system, the sensitivity and criticality of its data and processes, and the security

, requirements and environment of the system.

Level 2: Security Policy. A written interpretation of all existing laws, policies,
regulations, and guidance as they apply to the security of the system, its processes,

, data, and products.

Level 3: Security Organizational Structure. A formalized hierarchy of specialized
security management positions, each having detailed responsibilities, clearly defined

, authorities, and appropriate span of control.

Level 4: Security Implementation Procedures. A compilation of local regulations,
OIs, operational plans and procedures, which, if properly implemented will ensure
compliance with the stated security policy.

Level 5: Security Education, Training & Awareness. A formal program that
ensures all security management personnel are trained in their respective disciplines
and all system users are aware of their security responsibilities.

Level 6: Physical and Environmental System Protection. The facility characteristics
and operational procedures used to control physical access to the system, its
processes, data and products, and to protect the system from environment hazards.

Level 7: System Connectivity Controls. The communications architecture and
topology designed to control electronic linkage to the system.

Level 8 : System Access Controls. All identification and authentication control
mechanisms used to control logical access to the system, its processes, data, and
products.

Level 9: System Administration Controls. All actions taken to ensure optimal
use and integrity of system security features and security hardware/software.

Level 10: Storage Media Controls. All actions taken and resources available to
control the access to, protect the integrity of, ensure the availability of, and the
proper disposal of storage media associated with the operation of the system.

Level 11: Accountability Controls. All activities and resources that consistently
collect, record, trace, and resolve all actions that have security implications.

Level 12: Assurance. The sum of all actions and resources that provide a degree of
trustworthiness and credibility to all aspect of system operations.

i C4 Systems Security: The protection afforded command, control, communication, and computer systems in order to preserve
the availability, integrity, and confidentiality of the systems and information contained within the systems. Such protection is
the integrated application of the three C4 security component programs: COMSEC, COMPUSEC, and TEMPEST executed
in liaison with OPSEC, INFOSEC, personnel security (PERSEC), physical security (PHYSEC), and other security disciplines

2 as necessary.
Systems Security Posture: The sum of security measures, processes, and procedures applied to a system (see note 3) to ensure
availability protection from compromise, and integrity for the system, its processes, data, and products.
System: As used in this definition, refers to a single accreditable entity; i.e., a stand-alone PC, a LAN, a WAN, a Mini or
Mainframe computer and its connected terminals. 383

especially when viewed strictly from a computer security point of view.
However, the goal of the model is to provide a framework around which we
can build a mechanism to measure security posture in relation to existing
COMSEC, COMPUSEC and TEMPEST requirements. Rationale and examples
are provided for each level.

Level 1: System Mission. A statement describing the purpose and function of
the system, the sensitivity and criticality of its data and processes, and the
security requirements and environment of the system.

Security must begin with a thorough understanding of the purpose of
the system. All operational requirements must be thoroughly understood
before security requirements can be identified. The nature of the system
mission will drive the fundamental security policy for the system. This is
not to be confused with an organizational mission. The system mission
should be the specific role that the system plays in the overall organizational
mission.

The operational requirements should be clearly articulated in written
form. Though this may not be a regulatory requirement it is consistent with
good security practice. We have separated system mission from security
policy in recognition that the primary purpose of C4 systems is to provide
operational capabilities to organizations. Security is a necessary ingredient to
ensure the quality of that capability, but it is not an end product of the system
itself.

Level 2: Security Policy. A written interpretation of all existing laws, policies,
regulations, and guidance as they apply to the security of the system, its
processes, data, and products.

This level will establish all security requirements for the system. It is
usually accomplished as an integral part of a formal risk analysis which,
ideally, should take place early in the acquisition cycle of the system.

Level 3: Security Organizational Structure. A formalized hierarchy of
specialized security management positions, each having detailed
responsibilities, clearly defined authorities, and appropriate span of control.

Considering the complexity of today's communications-computing
environment it is vital that any large organization have a security
administrative structure in place. In the Air Force that structure is comprised
of positions such as the Major Command Computer Security Manager,
Computer System Security Officer, Terminal Area Security Officer, TEMPEST

384

Control Officer, etc. Maintaining good security posture requires continual
dissemination of information such as policy, procedures, special technical
information, etc. In addition, persons in these positions should have clearly
defined and supported authority to make security related decisions. Without
a formal security organizational structure there is little hope of improving
security posture throughout the organization.

Level 4: Security Implementation Procedures. A compilation of local
regulations, operating instructions, operational plans and procedures, which,
if properly implemented will ensure compliance with the stated security
policy.

Implementation procedures for security for a given system will be
based on general guidance provided by higher organizational levels special
local requirements. Security implementation procedures are the backbone of
continued quality security posture. These procedures are often complex and
seldom stated in a single security document.

Level 5: Security Education, Training and Awareness. A formal program that
ensures all security management personnel are trained in their respective
disciplines and all system users are aware of their security responsibilities.

Much effort has gone into education and awareness in the past and
more effort will be needed in the future. In the past this training focused on
good general security practices and regulatory requirements. In the future,
the nature of the training must become more specific about the quality of
security posture. For example, we constantly tell computer users and
administrators not to connect computers to networks without implementing
certain security features and yet we continue to find unauthorized
connectivity throughout the Air Force. We have told users not to connect
the systems without precautions but we haven't provided hard data that
clearly shows why they shouldn't. In keeping with good TQM practices,
future education, training and awareness efforts in the Air Force will be based
on data, not opinion or regulations. Our experience has shown that when
users are given data to support policy and procedures they usually modify
their practices. This model will provide the framework in which such
security posture data will be collected. The objective measurement of the
quality of training itself is difficult to perform. The effectiveness of the 5th
Level will probably be best judged by the measurement of Levels 6-11.

Level 6: Physical and Environmental System Protection. The facility
characteristics and operational procedures used to control physical access to

385

the system, its processes, data and products, and to protect the system from
environmental hazards.

This level has traditionally been the easiest to examine. Standards for
the physical protection of systems are well known and easily measured. It is
at this level that the nature of points of measurement may begin to differ for
the three disciplines (COMSEC, COMPUSEC, TEMPEST). For example, the
issue of control space for TEMPEST may be different than the issue of
controlled entry spaces for COMPUSEC.

Level 7: System Connectivity Controls. The communications architecture
and topology designed to control electronic linkage to the system.

We have distinguished between System Connectivity Controls and the
System Access Controls of Level 8. One might be inclined to combine the two
but there is advantage in keeping them separate. For example, classified
systems within the Air Force have been afforded an extra level of security
protection through the issuance of strict policy regarding the connectivity of
such systems to public communications systems. The computer system itself
will still need considerable system access controls to maintain good security
posture within its environment. However, a large part of the security risk to
these systems has been mitigated by a conscious decision not to connect them
to unclassified communications systems. The measurement of connectivity
controls should be relatively simple technically. However, fully describing
the connectivity of systems within operational environments is becoming
increasingly difficult for system owners. This level will require considerable
energy to completely characterize.

Level 8: System Access Controls. All identification and authentication
control mechanisms used to control logical access to the system, its processes,
data, and products.

The variety of System Access Controls have increased dramatically in
the last few years. Measuring the effectiveness of these mechanisms, at least
at a basic level, will be an area of emphasis for the ESSTs. Though access
controls don't answer all security concerns, they provide the backbone of good
computer security in relation to today's environment of extensive
connectivity.

Level 9: System Administration Controls. All actions taken to ensure
optimal use and integrity of system security features and security
hardware/software.

386

The role of the system administrator and computer system security
officer is crucial to the security of multi-user systems. System administration
controls encompass all actions by the system administrative and security
personnel and users to ensure that the security posture of the system is
optimized at all times. This includes such actions as the control of
maintenance accounts, user accounts, passwords, privileges, security review
procedures for product outputs, account application procedures, etc. The
status of various security features and the security discipline maintained on
the system is probably the most measurable of the 12 layers. We have made
considerable progress in the development of automated tools to measure
Levels 8 & 9.

Level 10: Storage Media Controls. All actions taken and resources available to
control the access to, protect the integrity of, ensure the availability of, and the
proper disposal of storage media associated with the operation of the system.

Again, this is an area of concern that is fairly easy to quantify, although
it may take considerable resource time to do so. It includes such issues as the
practice of labeling magnetic media, transfer of data via the "sneakernet", and
the regular practice of media backup and storage, etc. The combination of
Levels 7, 8, 9 & 10 can form the core of the most practical measures of daily
security posture in the field.

Level 11: Accountability Controls. All activities and resources that
consistently collect, record, trace, and resolve all actions that have security
implications for the system.

Accountability controls go beyond the traditional audit trails within an
operating system to include administrative and special actions capabilities to
resolve suspected incidents. For example, if a security incident occurs, i.e. a
system "cracker" or "malicious logic" incident, are all of the system resources
such as audit trails and other activity indicators usable to help identify and
remedy the situation. In addition, are the procedures in place to handle such
an incident, to include vulnerability and incident reporting procedures and
isolation and containment procedures and tools, etc. The key is to measure
the ability to resolve anomalies that have security implications. These factors
may also include basic education, awareness and training issues. Levels 1
thru 10 form the basis for pro-active security. If those levels are accomplished
effectively the need for Level 11 capabilities would be minimal. Level 11 is
really focused on the reactive aspect of security.

387

Level 12: Assurance. The sum of all actions and resources that provide a
degree of trustworthiness and credibility to all aspects of system operations.

Assurance lies at the heart of the "trusted system" concept. This level
of course includes the trusted system issues, but it is intended to describe all
actions that can be taken to provide a "measured" level of assurance as
opposed to an "evaluated" level of assurance in the trusted system sense.
Level 12 includes such activities as security test and evaluation, use of
statistical process control techniques at the local level to monitor security on a
specific system, as well as the use of trusted system software.

CONCLUSION

The use of the above security posture model has already proven
beneficial in the Air Force's attempt to quantify security posture in the field.
The limited data collected and lessons learned so far have already influenced
changes in long-standing procedures and guidance that used to be accepted as
effective. As the status of our security posture becomes clearer, we expect to
identify unexpected areas for improvement that can be affected by changes in
policy, procedures or guidance. As time progresses, we expect, with the aide
of tools such as the C4 Systems Security Posture Model to bring security
posture in the field under tight control and thereby enhance all aspects of C4
systems support to the operations community.

Deming, W. Edwards, Out of the Crisis, MIT_CAES, 1986.

Ishikawa, Kaoru, Guide to Quality Control, Asian Productivity Organization,
Tokyo, Japan, 1982.

Walton, Mary, Deming Management at Work, Putnam Publishing Group,
NY, 1991.

388

A MODEL OF RISK MANAGEMENT
IN THE DEVELOPMENT LIFE CYCLE

Captain Charles R. Pierce

Air Force Cryptologic Support Center (AFCSC/SRP)
San Antonio Texas 78243-5000

ABSTRACT

Computer security risk management has traditionally been
viewed as a process for determining what protection measures are
required for computer resources. Its primary protection target
has been computer facilities and mainframe computers housed
within them. This is a result of the origin of the risk
management mandate, Office of Management and Budget (0MB)
Circular A-71 [1], subsequently reiterated in Circular A-130 [2].
The primary targets of these directives were facilities and large
systems. Many government agencies and vendors have since
developed risk analysis models and products to meet the 0MB
defined goals. Many of these were designed to meet Federal
Information Publication (FIPS) Pub 65 [3] direction, whose goal
was to implement the 0MB direction. But the computer world has
changed to where major computer systems can now consist of mostly
microcomputers and local area networks. There are no "computer
facilities" for these systems since they reside in normal office
environments. Some of their resources, such as telephone lines,
are not proprietary to the system's owning organization. In the
meantime computer security threats have expanded from the
original traditional resource protection view (power, fire, etc.)
to more active and hostile environments (hackers, viruses,
industrial espionage). In addition to these traditional targets,
newer applications, such as computers embedded within other
systems (processes controllers, communications switches) have
become more vulnerable. The conventional risk management model
centered on resource protection no longer meets the protection
needs for system developers or users. To broaden protection,
models developed by the Department of Defense have extended risk
management to address information sensitivity. DoD's interest is
acute when classified information is the property at risk.
However, DoD models have yet to integrate risk management fully
into the system development life cycle, only making suggestions
as to when to perform a certain function, such as security test
and evaluation (ST&E). This paper proposes a life cycle risk
management model for managing risks throughout a system's life
cycle. It focuses on the life cycle phases when the system is
built because that is when to best counter risks by building in
protection measures. However, since it is a life cycle process
it must include risk abatement activities that address continuous
change and the system's eventual disposal. Because systems
currently exist at various stages of development or operation,
the model must provide entry points throughout for those who did
not begin risk management at the beginning.

389

RISK MANAGEMENT TODAY

As exercised today in most locations, risk management
consists of three phases; some form of risk analysis, a technical
certification that the system's implemented security features
meet stated requirements, and an accreditation to operate the
system in a particular environment. Various risk analysis
methodologies exist, both quantitative or qualitative or
combinations of both techniques. Quantitative methodologies
usually base loss expectations on some form of monetary values
such as annualized loss expectancy [3]. Qualitative methods,
used where exact costs are less easily determined, apply such
values as high, medium, or low. Often a mix of the two methods
is used. Monetary values are used for hard resources, e.g.,
equipment and buildings, and qualitative values are used for
softer assets, such as information sensitivity and personnel
experience. The depth of detail in a risk analysis can vary
based on many factors ranging from the system's size to the
levels of information's sensitivity. Certification is nominally
based on risk analysis results for the hardware, software, and
facilities. The certification's value can vary widely. To
certify that all security requirements are met does not ensure
that all requirements were properly stated or that a system is
indeed resistant to penetration or failure. If secure
communications were not initially required, the certification
will not address them and the risk to hacker penetration will
also not be addressed. Accreditation is the manager's decision
to operate the system in its proposed environment based on the
certifications. Unfortunately, in many cases the accrediting
authority has not been involved in security features development
until the accrediting decision is required.

One of the greatest problem with risk analysis is determining
the level of effort to pursue in its performance. Few methods or
tools easily adapt to all sizes and types of systems. A powerful
tool that would model a large multilevel network of diversely
configured nodes could be overkill for a suite of unconnected
office support microcomputers. Likewise a facility asset
protection tool would not address the fuzziness of multiple
information sensitivity levels. These and other factors
complicate the decision on the level of security features to
require, such as the level of Trusted Computing Base (TCB) [4].
DoD Directive 5200.28 [5] provides a matrix for determining a
required TCB level based on information sensitivity and user
clearance levels. However, the matrix does not adequately
consider environmental factors nor is it easily applicable where
there is no classified information or outside the DoD
environment. Nor does it address such issues as data integrity
or service assurance at a level comparable to sensitivity. There
is recent work in process on developing certification standards
that addresses these issues [6] [7]. All these ambiguities in
risk analysis and resulting certifications propagate into
accreditation, forcing decisions based possibly on inaccurate
information or invalid assumptions.

390

One of the major difficulties with current risk analysis
technologies are that they typically take a "slice-in-time" view
of a systems. The result is a snapshot of the analyzed system.
Analyzed security requirements are viewed as non-flexible fait
accompli, not as results of the risk analysis process itself.
Updating and maintaining risk analysis results usually means
performing the entire analysis again. This is because neither
the models or tools allows for sensitivity analysis (from the
accountant's point of view) of computations or easy reentry,
since the tools must be used serially. The proposed model
addresses these and other issues.

THE DEVELOPMENT LIFE CYCLE

As defined by the revised DoD Instruction 5000.2 [8], the
acquisition life cycle consists of five phases; Concept
Exploration and Definition, Demonstration and Validation,
Engineering Manufacturing and Development, Production and
Deployment, and Operations and Support. Each phase is preceded
by a milestone that reviews and completes the preceding phase and
begins next phase. Each milestone requires the system's program
manager to preform certain actions and produce defined documents,
such as the Test and Evaluation Master Plan (TEMP), for milestone
decision authority review and approval. A program does not
advance until all actions required for the previous phase have
been completed or adequately addressed. The development life
cycle is preceded by requirements development and their
documentation in a Mission Need Statement (MNS) that defines a
mission deficiency and an Operational Requirements Document (ORD)
defining broad performance requirements for the proposed system.

The DoDI 5000.2 addresses risk management from a programmatic
point of view, i.e., cost, schedule, and technology, but not from
a threat to information resources direction. Information
resource threats are to be considered in the MNS prior to
Milestone 0, Concept Studies Approval (before beginning Concept
Exploration and Development), and must be specifically assessed
before Milestone I, Concept Demonstration Approval (before
Demonstration and Validation). The depth of effort a program
office must exert to protect the system must be "consistent with
mission requirements and cost-effectiveness." What this depth
actually is not further defined, but using common sense is
implied. The program's protection countermeasures are to be
addressed by a multidisciplinary approach that addresses risks,
environments, and the developmental technology used during the
life cycle. The protection should include a time phased plan to
transition the security concept and countermeasures as the life
cycle progresses. MIL-STD-1785 [9] is to be used for
establishing a system security program prior to Milestone II,
Development Approval (before Engineering Manufacturing and
Development).

391

Thus, it seems that DoDI 5000.2 addresses those activities,
e.g., threat assessments, countermeasures development,
cost-benefit analyses, etc., that are usually considered a part
of risk analysis and management. Detailed study however reveals
that the implied point of view is not that of a comprehensive
program aimed at reducing computer security risks. The described
security program leans more toward a typical "security police"
type of effort that aims to protect the development program
itself, not to provide protection mechanisms internal to the
developing system. The program manager is left to his own
devices to integrate DoDI 5000.2's various security
pronouncements into an organized, concise statement of
requirements and to implement an effective program to meet them.

The risk management model's goal is to provide a methodology
to meet the program manager's need to comprehensively address
systems risks throughout the life cycle, from requirements
definition through system operation to replacement or disposal.
Because the model addresses requirements generation, its life
cycle begins before the system development life cycle as defined
in the DoD publications.

THE MODEL

The model begins by expanding typical information sensitivity
and system criticality assessments to increase the number of
security factors to consider. Sensitivity involves issues in
information and personnel security and, to some extent, physical
security. Criticality (defined here as service assurance and
data or system integrity) is increasingly being addressed by
computer security practitioners, but is most often rolled into
such traditional system issues as reliability and
maintainability. It is a primary issue for systems such as those
requiring nuclear surety and medically related life support
surety. The model expands the factors to consider for risk
analysis to include the full environment of security
requirements. This includes communications security (COMSEC),
emanations security (TEMPEST), physical security, personnel
security, administrative security, procedural security, etc. In
other words, all the securities included in the "security chain."
This integrated requirements analysis provides the input for
developing a system level security policy. An initial, "quick
look," risk analysis and macro level security policy is
encouraged, but not required, when developing the system's need
requirements, i.e., the MNS. This "quick look" should be used to
determine the feasibility of the proposed security features. The
first full blown iteration of an integrated risk analysis will be
performed after system development is approved, early in concept
exploration and definition. This analysis should be performed by
the system's Program Management Office (PMO) together with those
who initially require the system and its eventual users. The
goal is to determine the earliest possible allocation of security
requirements to security disciplines or features. This will
result in proposed TCB levels, clearance levels, facility

392

security features, etc., that can then be allocated to
requirements and specifications.

Guidance currently exists for many of the subanalyses
required to implement the fully integrated security requirements
analysis. Both Air Force [10] and DoD [11] guidelines provide
for initial TCB level determinations. As discussed before these
levels need to be "massaged" for other environmental
considerations. Once sensitivity levels are determined, DoD
policy is specific on what clearance levels are needed and the
related basic physical security requirements. TEMPEST and COMSEC
measures are more easily determined due to fairly recent specific
guidance development. [12] Criticality requirements are not as
easily translated into trust or security "levels," but there are
efforts in this area at the Air Force [13] and the National
Institute of Standards and Technology (NIST) [14]. This portion
of the model could be greatly enhanced by automated tools to
implement requirements analysis.

The model requires the PMO or procuring agent to establish a
Security Working Group (SWG) if the system's size or complexity
warrants it. (It's imperative to mention at this time that the
model provides the flexibility to adapt to system size,
complexity, or intended application. It's equally adaptable for
large scale automated information systems or embedded
applications.) The SWG is the PMO' s main focal point for all
security relevant activities.

The primary deliverable products in concept development
consists of various plans (e.g., certification, accreditation,
test, maintenance, logistics support, etc.), proposed concepts of
operation, and an initial risk analysis. The model requires
early delivery of the plans. They, along with the risk analysis,
must be reviewed and updated as necessary at each program
milestone. The idea is to build currency and security into the
system's risk management as the system develops, just as you
would do for any technology advancements that the development
could absorb.

As system's development progresses from concept definition
into demonstration and validation or prototype development, the
system's requirements allocation to security features becomes
more concrete. TCB levels firm up, and TEMPEST and COMSEC
features begin to be engineered into the design. Now is the time
to complete detailed, formal risk analyses and to deliver their
results. The model requires particular items to be developed and
delivered during the life cycle phases for PMO evaluation (Figure
1). Risk analysis results become part of the program manager's
required presentation to the milestone decision authority before
the development can proceed to the next life cycle phase. In
essence, the milestone decision authority is exercising
Designated Approving Authority (DAA) authority.

393

PHASE ACTION PRODUCT

Milestone 0 - Concept Studies Approval

Concept Initiate Risk User Validated
Exploration Management Security Requirements
and Identify Security Draft Specifications
Definition Requirements Include Initial Risk
(CE&D) Identify Trusted in Security Plan
(Phase 0) Computing Base (TCB) Source Selection

Develop Security Criteria
Test Plans Security Policy,
Develop System to Include CONOPS
Security Plan
Develop System
Security Policy
Identify Security
Focal Points

Mi] .estone I - Concept Demonstration Approval

• • •

Figure 1. Sample Development Actions and Products

At this time documentation supporting risk management can
easily be contracted to the system developer, if contracting is
the acquisition strategy. The Air Force [15] [16] and National
Computer Security Center (NCSC) [17] provide guidance and
specification language for risk management support. The model
provides data requirements and timing requirements for those
deliverables. Once the PMO produces final system requirements
and a system security policy, risk management documentation can
become a set of contract deliverables. If the system is
sufficiently small, or exists of primarily off the shelf
components, it's possible for the PMO or SWG to perform all
required risk management activities and develop all required
documents. The size of the products and effort expended on them
is still a difficult determination, but AFSSMs 5024 and 5028
provide guidance on what you can expect for TCB products.

The relative effort expended on plans, assessments, etc.,
diminishes as the development progresses into engineering
manufacturing and development. The risk management focus now
centers on implementing and testing security measures, evaluating
their effectiveness, and defining residual risks. Properly
planning and coordinating security features delivery with system
development is essential if they are to be tested concurrently
with other system features, a necessity if these are truly
integrated, "system" tests. The model requires security testing
to not stand out as a separate function. Since the model
generated security requirements early in the life cycle, just as
other operational requirements were stated in the ORD, these

394

requirements should be tested the same as other features are
tested for functionality. The only difference is that "security"
is their operational mission. Concurrent testing also provides a
better capability to assess security measures impact on other
system functions.

As the program development moves to production versions, the
model emphasizes completing remaining risk analysis functions
(i.e., testing) and progressing to system certification and
operational accreditation. The program manager certifies the
system, including all security relevant features under his
control, as having met security requirements, with or without
residual risks. These residual risks could have been revealed as
the system developed, will be discovered as not having been
addressed in early analyses, or will simply be risks the security
measures cannot fully counteract. In any case the DAA for the
system's user will either accredit the system in its final
configuration or grant short term interim accreditation while
residual risks are addressed. At accreditation the system
becomes fully integrated with its operating environment. The DAA
must not only consider the program manager's certification but
also that for the operating facility, if one exists. Remember,
back in requirements analysis, certain security requirements will
have been allocated to countermeasures other than those within
the computer system itself. This can include the bulk of
environmental security features, such as resources protection,
contingency plans, and off-site backup and storage. The model
also considers these facility security features. The model also
provides for maintaining risk management itself, since risk
management is a life cycle process mated to the system
development process.

MODEL FLEXIBILITY

A major feature of the model is its adaptability to various
incarnations of computer systems. The model cares not if the
system is a standalone mainframe, a widespread network of
multiple nodes, a local area network of off-the-shelf
microcomputers, or a network of embedded computer resources
within a tactical weapon system. The model is keyed to security
and the life cycle, not the system specifics. It is a
requirements translation model not based on specific
architectures. Therefore, if all of its steps are not required
for the development or a particular architecture, they may be
omitted (with DAA approval). If a fully developed TCB is not
required (such as for embedded systems), the model can be
fulfilled without the TCB evaluation, and certification still
achieved. There are minimum documentation requirements, because
they are risk management requirements, e.g., plans, threat
definitions, test results, etc. In fact, taking the model's
basic boilerplate, tailoring it to the particular system's
development requirements, and adding roles and responsibilities
for performing its activities will produce a simplified security
or certification/accreditation plan. The resulting plan is

395

probably incomplete, and requires adding such features as the
time phasing for activities, since these depend on the program's
phasing. Flexibility is not without potential pitfalls however.
Too many adjustments and a failure to fully appreciate their
effects can lead to an incomplete and insufficient effort. As
with today's current planning efforts, it behooves the PMO to
have an outside review of the proposed plan. The model provides
for an independent verification and validation activity for
reviewing activities.

MODEL ADAPTABILITY

Much as the model is flexible about the level of effort to
spend on risk management, it is also adaptable as to how risk
management fits in the development life cycle. It defines
sufficient reentry points where you could begin to apply risk
management in a development. Ideally you should begin with
requirements analysis, but if you find you're lagging behind,
there are loops in the model to get risk management to a
reasonable point. In fact, the last activity indicated by the
model is to recycle back into itself appropriately. Since
recertifications and reaccreditations are required at various
times or upon significant events, its imperative that the model
provide for reentry and reperformance. Therefore, the model
never closes until system disposal. This allows it to be applied
to those systems that have completed development and are actually
in operation.

MODEL DEVELOPMENT

Major portions of the model have been already been developed.
The integration of computer security into the development life
cycle is depicted in AFSSM 5010 [18], produced by the Air Force
Cryptologic Support Center. This particular document does not
focus specifically on risk management, but instead takes a rather
high level view of integrating risk analysis and various security
features into the development life cycle. One of its primary
attributes is a depiction of key DAA interface points in the life
cycle.

Further work in the model and a DoD certification standard is
being done by a working group under the auspices of the Joint
Logistics Commanders' Information Systems Security (INFOSEC)
Management Panel (IMP) that includes the integration of risk
management into the life cycle. The risk management model is
being proposed as subset of the more encompassing standard for
certification. The progress to date on the certification
standard and its subelements is:

1. Identify Key Concepts and Objectives (Completed January
1992)

2. Provide Standard Definitions (Completed January 1992)

396

3. Outline Certification-Related Processes

Risk Management (Completed September 1992)

Evaluation (Completed April 1992)

Accreditation (Completed September 1992)

4. Recommended Standards and Policy (First Draft September
1992)

5. Identify Needed Implementation Resources (Completed
September 1992)

6. Identify Training Reguirements (Completed September 1992)

It is intended that the risk management model remain an
informal model when completed. A strictly formal model would
indicate a desire for strict adherence to it in an
implementation. This would lead to attempts to formally apply
the model during a program development, thereby negating the
model's intended adaptability and flexibility.

REFERENCES

1. Office of Management and Budget, Circular A-71, Transmittal
Memorandum No. 1, Security of Federal Automated Information
Systems, 27 July 1978.

2. Office of Management and Budget, Circular A-130, Management
of Federal Information resources, 12 December 1985.

3. Guideline for Automatic Data Processing Risk Analysis, FIPS
Pub 65, National Institute of Standards and Technology, August
1979.

4. Department of Defense Trusted Computer System Evaluation
Criteria, 26 December 1985.

5. Department of Defense Directive 5200.28, Security
Reguirements for Automated Information Systems (AIS),
21 March 1988.

6. Pierce, C.R., Standardized Certification, Proceedings of the
14th National Computer Security Conference, 1991.

7. Pierce, C.R., Standardized Certification - Progression,
Proceedings of the 15th National Computer Security Conference,
1992.

8. Department of Defense Directive 5000.2, Defense Acquisition
Management Policy and Procedures, 23 February 1991.

397

9. MIL-STD-1785, System Security Program Management
Requirements.

10. AFSSI 5100, The Air Force Computer Security (COMPUSEC)
Program, 2 June 1992.

11. CSC-STD-003-55, Computer Security Requirements, 25 June 85.

12. NTISSC 7000, (S)TEMPEST Countermeasure of Facilities(U),
17 October 1988.

13. AFSSM 5029, Trusted Critical Computer System Certification
Criteria (Draft), 1 April 1992.

14. Wallace, Dolores R., D. Richard Kuhn, and John C.
Cherniavsky, Proceedings of the Workshop on High Integrity
Software; Gaithersburg, MD; Jan 22-22, 1991, NIST SP 500-190,
National Institute of Standards and Technology, 1991.

15. AFSSM 5024, Security in Acquisitions (Draft), 1 April 1992.

16. AFSSM 5028, Acquisition Language for Critical Systems
(Draft), 10 June 1992.

17. NCSC-TG-24, An Introduction to Procurement Initiators on DoD
Computer Security Requirements (Draft), 25 October 1991.

18. AFSSM 5010, Computer Security in the Acquisition Life Cycle
(Draft), 1 April 1992.

•U.S. G.P.0.:1992-625-512:60546 398

